brainpy.dyn.base.NeuGroup#

class brainpy.dyn.base.NeuGroup(size, name=None)[source]#

Base class to model neuronal groups.

There are several essential attributes:

  • size: the geometry of the neuron group. For example, (10, ) denotes a line of neurons, (10, 10) denotes a neuron group aligned in a 2D space, (10, 15, 4) denotes a 3-dimensional neuron group.

  • num: the flattened number of neurons in the group. For example, size=(10, ) => num=10, size=(10, 10) => num=100, size=(10, 15, 4) => num=600.

Parameters
  • size (int, tuple of int, list of int) – The neuron group geometry.

  • name (optional, str) – The name of the dynamic system.

__init__(size, name=None)[source]#

Methods

__init__(size[, name])

get_delay_data(name, delay_step, *indices)

Get delay data according to the provided delay steps.

ints([method])

Collect all integrators in this node and the children nodes.

load_states(filename[, verbose])

Load the model states.

nodes([method, level, include_self])

Collect all children nodes.

register_delay(name, delay_step, delay_target)

Register delay variable.

register_implicit_nodes(nodes)

register_implicit_vars(variables)

reset()

Reset function which reset the whole variables in the model.

save_states(filename[, variables])

Save the model states.

train_vars([method, level, include_self])

The shortcut for retrieving all trainable variables.

unique_name([name, type_])

Get the unique name for this object.

update(t, dt)

The function to specify the updating rule.

vars([method, level, include_self])

Collect all variables in this node and the children nodes.

Attributes

global_delay_targets

global_delay_vars

name

steps