class brainpy.dyn.neurons.AdQuaIF(size, V_rest=- 65.0, V_reset=- 68.0, V_th=- 30.0, V_c=- 50.0, a=1.0, b=0.1, c=0.07, tau=10.0, tau_w=10.0, V_initializer=ZeroInit, w_initializer=ZeroInit, method='exp_auto', keep_size=False, name=None)[source]#

Model Descriptions

\begin{split}\begin{aligned} \tau_m \frac{d V}{d t}&=c(V-V_{rest})(V-V_c) - w + I(t), \\ \tau_w \frac{d w}{d t}&=a(V-V_{rest}) - w, \end{aligned}\end{split}

once the membrane potential reaches the spike threshold,

$\begin{split}V \rightarrow V_{reset}, \\ w \rightarrow w+b.\end{split}$

Model Examples

>>> import brainpy as bp
>>> runner = bp.dyn.DSRunner(group, monitors=['V', 'w'], inputs=('input', 30.))
>>> runner.run(300)
>>> fig, gs = bp.visualize.get_figure(2, 1, 3, 8)
>>> bp.visualize.line_plot(runner.mon.ts, runner.mon.V, ylabel='V')
>>> bp.visualize.line_plot(runner.mon.ts, runner.mon.w, ylabel='w', show=True)


Model Parameters

 Parameter Init Value Unit Explanation V_rest -65 mV Resting potential. V_reset -68 mV Reset potential after spike. V_th -30 mV Threshold potential of spike and reset. V_c -50 mV Critical voltage for spike initiation. Must be larger than $$V_{rest}$$. a 1 The sensitivity of the recovery variable $$u$$ to the sub-threshold fluctuations of the membrane potential $$v$$ b .1 The increment of $$w$$ produced by a spike. c .07 Coefficient describes membrane potential update. Larger than 0. tau 10 ms Membrane time constant. tau_w 10 ms Time constant of the adaptation current.

Model Variables

 Variables name Initial Value Explanation V 0 Membrane potential. w 0 Adaptation current. input 0 External and synaptic input current. spike False Flag to mark whether the neuron is spiking. t_last_spike -1e7 Last spike time stamp.

References

1

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons?. IEEE transactions on neural networks, 15(5), 1063-1070.

2

Touboul, Jonathan. “Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons.” SIAM Journal on Applied Mathematics 68, no. 4 (2008): 1045-1079.

__init__(size, V_rest=- 65.0, V_reset=- 68.0, V_th=- 30.0, V_c=- 50.0, a=1.0, b=0.1, c=0.07, tau=10.0, tau_w=10.0, V_initializer=ZeroInit, w_initializer=ZeroInit, method='exp_auto', keep_size=False, name=None)[source]#

Methods

 __init__(size[, V_rest, V_reset, V_th, V_c, ...]) dV(V, t, w, I_ext) dw(w, t, V) get_delay_data(name, delay_step, *indices) Get delay data according to the provided delay steps. ints([method]) Collect all integrators in this node and the children nodes. load_states(filename[, verbose]) Load the model states. nodes([method, level, include_self]) Collect all children nodes. register_delay(name, delay_step, delay_target) Register delay variable. register_implicit_nodes(nodes) register_implicit_vars(variables) reset() Reset function which reset the whole variables in the model. save_states(filename[, variables]) Save the model states. train_vars([method, level, include_self]) The shortcut for retrieving all trainable variables. unique_name([name, type_]) Get the unique name for this object. update(t, dt) The function to specify the updating rule. vars([method, level, include_self]) Collect all variables in this node and the children nodes.

Attributes

 derivative global_delay_targets global_delay_vars name steps