# brainpy.integrators.ode.adaptive_rk.RKF12#

class brainpy.integrators.ode.adaptive_rk.RKF12(f, var_type=None, dt=None, name=None, adaptive=None, tol=None, show_code=False, state_delays=None, neutral_delays=None)[source]#

The Fehlberg RK1(2) method for ODEs.

The Fehlberg method has two methods of orders 1 and 2.

It has the characteristics of:

• method stage = 2

• method order = 1

• Butcher Tables:

$\begin{split}\begin{array}{l|ll} 0 & & \\ 1 / 2 & 1 / 2 & \\ 1 & 1 / 256 & 255 / 256 & \\ \hline & 1 / 512 & 255 / 256 & 1 / 512 \\ & 1 / 256 & 255 / 256 & 0 \end{array}\end{split}$

References

1

Fehlberg, E. (1969-07-01). “Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems”

__init__(f, var_type=None, dt=None, name=None, adaptive=None, tol=None, show_code=False, state_delays=None, neutral_delays=None)#

Methods

 __init__(f[, var_type, dt, name, adaptive, ...]) build() load_states(filename[, verbose]) Load the model states. nodes([method, level, include_self]) Collect all children nodes. register_implicit_nodes(nodes) register_implicit_vars(variables) save_states(filename[, variables]) Save the model states. set_integral(f) Set the integral function. train_vars([method, level, include_self]) The shortcut for retrieving all trainable variables. unique_name([name, type_]) Get the unique name for this object. vars([method, level, include_self]) Collect all variables in this node and the children nodes.

Attributes

 A B1 B2 C arg_names arguments All arguments when calling the numer integrator of the differential equation. dt The numerical integration precision. integral The integral function. name neutral_delays neutral delays. parameters The parameters defined in the differential equation. state_delays State delays. variables The variables defined in the differential equation.