brainpy.dyn.layers.Dropout#

class brainpy.dyn.layers.Dropout(prob, seed=None, mode=TrainingMode, name=None)[source]#

A layer that stochastically ignores a subset of inputs each training step.

In training, to compensate for the fraction of input values dropped (rate), all surviving values are multiplied by 1 / (1 - rate).

This layer is active only during training (mode=’train’). In other circumstances it is a no-op.

Parameters
  • prob (float) – Probability to keep element of the tensor.

  • seed (optional, int) – The random sampling seed.

  • name (str, optional) – The name of the dynamic system.

References

1

Srivastava, Nitish, et al. “Dropout: a simple way to prevent neural networks from overfitting.” The journal of machine learning research 15.1 (2014): 1929-1958.

__init__(prob, seed=None, mode=TrainingMode, name=None)[source]#

Methods

__init__(prob[, seed, mode, name])

clear_input()

get_delay_data(identifier, delay_step, *indices)

Get delay data according to the provided delay steps.

load_states(filename[, verbose])

Load the model states.

nodes([method, level, include_self])

Collect all children nodes.

offline_fit(target, fit_record)

offline_init()

online_fit(target, fit_record)

online_init()

register_delay(identifier, delay_step, ...)

Register delay variable.

register_implicit_nodes(*nodes, **named_nodes)

register_implicit_vars(*variables, ...)

reset([batch_size])

Reset function which reset the whole variables in the model.

reset_local_delays([nodes])

Reset local delay variables.

reset_state([batch_size])

Reset function which reset the states in the model.

save_states(filename[, variables])

Save the model states.

train_vars([method, level, include_self])

The shortcut for retrieving all trainable variables.

unique_name([name, type_])

Get the unique name for this object.

update(sha, x)

The function to specify the updating rule.

update_local_delays([nodes])

Update local delay variables.

vars([method, level, include_self])

Collect all variables in this node and the children nodes.

Attributes

global_delay_data

mode

Mode of the model, which is useful to control the multiple behaviors of the model.

name

Name of the model.