brainpy.layers.BatchNorm3d#
- class brainpy.layers.BatchNorm3d(num_features, axis=(0, 1, 2, 3), epsilon=1e-05, momentum=0.99, affine=True, bias_initializer=ZeroInit, scale_initializer=OneInit(value=1.0), axis_name=None, axis_index_groups=None, mode=None, name=None)[source]#
3-D batch normalization [1].
The data should be of (b, h, w, d, c), where b is the batch dimension, h is the height dimension, w is the width dimension, d is the depth dimension, and c is the channel dimension.
\[y=\frac{x-\mathrm{E}[x]}{\sqrt{\operatorname{Var}[x]+\epsilon}} * \gamma+\beta\]Note
This
momentum
argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is \(\hat{x}_\text{new} = \text{momentum} \times \hat{x} + (1-\text{momentum}) \times x_t\), where \(\hat{x}\) is the estimated statistic and \(x_t\) is the new observed value.- Parameters:
num_features (int) –
C
from an expected input of size(B, H, W, D, C)
.axis (int, tuple, list) – axes where the data will be normalized. The feature (channel) axis should be excluded.
epsilon (float) – a value added to the denominator for numerical stability. Default: 1e-5
momentum (float) – The value used for the
running_mean
andrunning_var
computation. Default: 0.99affine (bool) – A boolean value that when set to
True
, this module has learnable affine parameters. Default:True
bias_initializer (Initializer, ArrayType, Callable) – an initializer generating the original translation matrix
scale_initializer (Initializer, ArrayType, Callable) – an initializer generating the original scaling matrix
axis_name (optional, str, sequence of str) – If not
None
, it should be a string (or sequence of strings) representing the axis name(s) over which this module is being run within a jax map (e.g.jax.pmap
orjax.vmap
). Supplying this argument means that batch statistics are calculated across all replicas on the named axes.axis_index_groups (optional, sequence) – Specifies how devices are grouped. Valid only within
jax.pmap
collectives.
References
- __init__(num_features, axis=(0, 1, 2, 3), epsilon=1e-05, momentum=0.99, affine=True, bias_initializer=ZeroInit, scale_initializer=OneInit(value=1.0), axis_name=None, axis_index_groups=None, mode=None, name=None)[source]#
Methods
__init__
(num_features[, axis, epsilon, ...])clear_input
()cpu
()Move all variable into the CPU device.
cuda
()Move all variables into the GPU device.
get_delay_data
(identifier, delay_step, *indices)Get delay data according to the provided delay steps.
load_state_dict
(state_dict[, warn, compatible])Copy parameters and buffers from
state_dict
into this module and its descendants.load_states
(filename[, verbose])Load the model states.
nodes
([method, level, include_self])Collect all children nodes.
register_delay
(identifier, delay_step, ...)Register delay variable.
register_implicit_nodes
(*nodes[, node_cls])register_implicit_vars
(*variables[, var_cls])reset
(*args, **kwargs)Reset function which reset the whole variables in the model.
reset_local_delays
([nodes])Reset local delay variables.
reset_state
(*args, **kwargs)Reset function which reset the states in the model.
save_states
(filename[, variables])Save the model states.
state_dict
()Returns a dictionary containing a whole state of the module.
to
(device)Moves all variables into the given device.
tpu
()Move all variables into the TPU device.
train_vars
([method, level, include_self])The shortcut for retrieving all trainable variables.
tree_flatten
()Flattens the object as a PyTree.
tree_unflatten
(aux, dynamic_values)Unflatten the data to construct an object of this class.
unique_name
([name, type_])Get the unique name for this object.
update
(x)The function to specify the updating rule.
update_local_delays
([nodes])Update local delay variables.
vars
([method, level, include_self, ...])Collect all variables in this node and the children nodes.
Attributes
global_delay_data
Global delay data, which stores the delay variables and corresponding delay targets.
mode
Mode of the model, which is useful to control the multiple behaviors of the model.
name
Name of the model.
pass_shared