brainpy.layers.RNNCell#
- class brainpy.layers.RNNCell(num_in, num_out, state_initializer=ZeroInit, Wi_initializer=XavierNormal(scale=1.0, mode=fan_avg, in_axis=-2, out_axis=-1, distribution=truncated_normal, rng=[1534053657 822008870]), Wh_initializer=XavierNormal(scale=1.0, mode=fan_avg, in_axis=-2, out_axis=-1, distribution=truncated_normal, rng=[1534053657 822008870]), b_initializer=ZeroInit, activation='relu', mode=None, train_state=False, name=None)[source]#
Basic fully-connected RNN core.
Given \(x_t\) and the previous hidden state \(h_{t-1}\) the core computes
\[h_t = \mathrm{ReLU}(w_i x_t + b_i + w_h h_{t-1} + b_h)\]The output is equal to the new state, \(h_t\).
- Parameters:
num_out (int) – The number of hidden unit in the node.
state_initializer (callable, Initializer, bm.ndarray, jax.numpy.ndarray) – The state initializer.
Wi_initializer (callable, Initializer, bm.ndarray, jax.numpy.ndarray) – The input weight initializer.
Wh_initializer (callable, Initializer, bm.ndarray, jax.numpy.ndarray) – The hidden weight initializer.
b_initializer (optional, callable, Initializer, bm.ndarray, jax.numpy.ndarray) – The bias weight initializer.
activation (str, callable) – The activation function. It can be a string or a callable function. See
brainpy.math.activations
for more details.
- __init__(num_in, num_out, state_initializer=ZeroInit, Wi_initializer=XavierNormal(scale=1.0, mode=fan_avg, in_axis=-2, out_axis=-1, distribution=truncated_normal, rng=[1534053657 822008870]), Wh_initializer=XavierNormal(scale=1.0, mode=fan_avg, in_axis=-2, out_axis=-1, distribution=truncated_normal, rng=[1534053657 822008870]), b_initializer=ZeroInit, activation='relu', mode=None, train_state=False, name=None)[source]#
Methods
__init__
(num_in, num_out[, ...])clear_input
()cpu
()Move all variable into the CPU device.
cuda
()Move all variables into the GPU device.
get_delay_data
(identifier, delay_step, *indices)Get delay data according to the provided delay steps.
load_state_dict
(state_dict[, warn, compatible])Copy parameters and buffers from
state_dict
into this module and its descendants.load_states
(filename[, verbose])Load the model states.
nodes
([method, level, include_self])Collect all children nodes.
register_delay
(identifier, delay_step, ...)Register delay variable.
register_implicit_nodes
(*nodes[, node_cls])register_implicit_vars
(*variables[, var_cls])reset
(*args, **kwargs)Reset function which reset the whole variables in the model.
reset_local_delays
([nodes])Reset local delay variables.
reset_state
([batch_size])Reset function which reset the states in the model.
save_states
(filename[, variables])Save the model states.
state_dict
()Returns a dictionary containing a whole state of the module.
to
(device)Moves all variables into the given device.
tpu
()Move all variables into the TPU device.
train_vars
([method, level, include_self])The shortcut for retrieving all trainable variables.
tree_flatten
()Flattens the object as a PyTree.
tree_unflatten
(aux, dynamic_values)Unflatten the data to construct an object of this class.
unique_name
([name, type_])Get the unique name for this object.
update
(x)The function to specify the updating rule.
update_local_delays
([nodes])Update local delay variables.
vars
([method, level, include_self, ...])Collect all variables in this node and the children nodes.
Attributes
global_delay_data
Global delay data, which stores the delay variables and corresponding delay targets.
mode
Mode of the model, which is useful to control the multiple behaviors of the model.
name
Name of the model.
pass_shared