# brainpy.neurons.HindmarshRose#

class brainpy.neurons.HindmarshRose(size, a=1.0, b=3.0, c=1.0, d=5.0, r=0.01, s=4.0, V_rest=-1.6, V_th=1.0, V_initializer=ZeroInit, y_initializer=OneInit(value=-10.0), z_initializer=ZeroInit, noise=None, method='exp_auto', keep_size=False, input_var=True, name=None, mode=None, spike_fun=<brainpy._src.math.surrogate._utils.VJPCustom object>)[source]#

Hindmarsh-Rose neuron model.

Model Descriptions

The Hindmarsh–Rose model [1] [2] of neuronal activity is aimed to study the spiking-bursting behavior of the membrane potential observed in experiments made with a single neuron.

The model has the mathematical form of a system of three nonlinear ordinary differential equations on the dimensionless dynamical variables $$x(t)$$, $$y(t)$$, and $$z(t)$$. They read:

\begin{split}\begin{aligned} \frac{d V}{d t} &= y - a V^3 + b V^2 - z + I \\ \frac{d y}{d t} &= c - d V^2 - y \\ \frac{d z}{d t} &= r (s (V - V_{rest}) - z) \end{aligned}\end{split}

where $$a, b, c, d$$ model the working of the fast ion channels, $$I$$ models the slow ion channels.

Model Examples

>>> import brainpy.math as bm
>>> import brainpy as bp
>>> import matplotlib.pyplot as plt
>>>
>>> bp.math.set_dt(dt=0.01)
>>> bp.ode.set_default_odeint('rk4')
>>>
>>> types = ['quiescence', 'spiking', 'bursting', 'irregular_spiking', 'irregular_bursting']
>>> bs = bm.array([1.0, 3.5, 2.5, 2.95, 2.8])
>>> Is = bm.array([2.0, 5.0, 3.0, 3.3, 3.7])
>>>
>>> # define neuron type
>>> group = bp.neurons.HindmarshRose(len(types), b=bs)
>>> runner = bp.DSRunner(group, monitors=['V'], inputs=['input', Is],)
>>> runner.run(1e3)
>>>
>>> fig, gs = bp.visualize.get_figure(row_num=3, col_num=2, row_len=3, col_len=5)
>>> for i, mode in enumerate(types):
>>>     fig.add_subplot(gs[i // 2, i % 2])
>>>     plt.plot(runner.mon.ts, runner.mon.V[:, i])
>>>     plt.title(mode)
>>>     plt.xlabel('Time [ms]')
>>> plt.show()


Model Parameters

 Parameter Init Value Unit Explanation a 1 Model parameter. Fixed to a value best fit neuron activity. b 3 Model parameter. Allows the model to switch between bursting and spiking, controls the spiking frequency. c 1 Model parameter. Fixed to a value best fit neuron activity. d 5 Model parameter. Fixed to a value best fit neuron activity. r 0.01 Model parameter. Controls slow variable z’s variation speed. Governs spiking frequency when spiking, and affects the number of spikes per burst when bursting. s 4 Model parameter. Governs adaption.

Model Variables

 Member name Initial Value Explanation V -1.6 Membrane potential. y -10 Gating variable. z 0 Gating variable. spike False Whether generate the spikes. input 0 External and synaptic input current. t_last_spike -1e7 Last spike time stamp.

References

__init__(size, a=1.0, b=3.0, c=1.0, d=5.0, r=0.01, s=4.0, V_rest=-1.6, V_th=1.0, V_initializer=ZeroInit, y_initializer=OneInit(value=-10.0), z_initializer=ZeroInit, noise=None, method='exp_auto', keep_size=False, input_var=True, name=None, mode=None, spike_fun=<brainpy._src.math.surrogate._utils.VJPCustom object>)[source]#

Methods

 __init__(size[, a, b, c, d, r, s, V_rest, ...]) clear_input() Function to clear inputs in the neuron group. cpu() Move all variable into the CPU device. cuda() Move all variables into the GPU device. dV(V, t, y, z, I_ext) dy(y, t, V) dz(z, t, V) get_batch_shape([batch_size]) get_delay_data(identifier, delay_step, *indices) Get delay data according to the provided delay steps. load_state_dict(state_dict[, warn, compatible]) Copy parameters and buffers from state_dict into this module and its descendants. load_states(filename[, verbose]) Load the model states. nodes([method, level, include_self]) Collect all children nodes. register_delay(identifier, delay_step, ...) Register delay variable. register_implicit_nodes(*nodes[, node_cls]) register_implicit_vars(*variables[, var_cls]) reset(*args, **kwargs) Reset function which reset the whole variables in the model. reset_local_delays([nodes]) Reset local delay variables. reset_state([batch_size]) Reset function which reset the states in the model. save_states(filename[, variables]) Save the model states. state_dict() Returns a dictionary containing a whole state of the module. to(device) Moves all variables into the given device. tpu() Move all variables into the TPU device. train_vars([method, level, include_self]) The shortcut for retrieving all trainable variables. tree_flatten() Flattens the object as a PyTree. tree_unflatten(aux, dynamic_values) Unflatten the data to construct an object of this class. unique_name([name, type_]) Get the unique name for this object. update([x]) The function to specify the updating rule. update_local_delays([nodes]) Update local delay variables. vars([method, level, include_self, ...]) Collect all variables in this node and the children nodes.

Attributes

 derivative global_delay_data Global delay data, which stores the delay variables and corresponding delay targets. mode Mode of the model, which is useful to control the multiple behaviors of the model. name Name of the model. varshape The shape of variables in the neuron group.