brainpy.integrators.ode.explicit_rk.RK4Rule38#

class brainpy.integrators.ode.explicit_rk.RK4Rule38(f, var_type=None, dt=None, name=None, show_code=False, state_delays=None, neutral_delays=None)[source]#

3/8-rule fourth-order method for ODEs.

A slight variation of “the” Runge–Kutta method is also due to Kutta in 1901 1 and is called the 3/8-rule. The primary advantage this method has is that almost all of the error coefficients are smaller than in the popular method, but it requires slightly more FLOPs (floating-point operations) per time step.

It has the characteristics of:

  • method stage = 4

  • method order = 4

  • Butcher Tables:

\[\begin{split}\begin{array}{c|cccc} 0 & 0 & 0 & 0 & 0 \\ 1 / 3 & 1 / 3 & 0 & 0 & 0 \\ 2 / 3 & -1 / 3 & 1 & 0 & 0 \\ 1 & 1 & -1 & 1 & 0 \\ \hline & 1 / 8 & 3 / 8 & 3 / 8 & 1 / 8 \end{array}\end{split}\]

References

1

Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.

__init__(f, var_type=None, dt=None, name=None, show_code=False, state_delays=None, neutral_delays=None)#

Methods

__init__(f[, var_type, dt, name, show_code, ...])

build()

load_states(filename[, verbose])

Load the model states.

nodes([method, level, include_self])

Collect all children nodes.

register_implicit_nodes(*nodes, **named_nodes)

register_implicit_vars(*variables, ...)

save_states(filename[, variables])

Save the model states.

set_integral(f)

Set the integral function.

train_vars([method, level, include_self])

The shortcut for retrieving all trainable variables.

unique_name([name, type_])

Get the unique name for this object.

vars([method, level, include_self])

Collect all variables in this node and the children nodes.

Attributes

A

B

C

arguments

All arguments when calling the numer integrator of the differential equation.

dt

The numerical integration precision.

integral

The integral function.

name

Name of the model.

neutral_delays

neutral delays.

parameters

The parameters defined in the differential equation.

state_delays

State delays.

variables

The variables defined in the differential equation.