Hardshrink#
- class brainpy.dnn.Hardshrink(lambd=0.5)[source]#
Applies the Hard Shrinkage (Hardshrink) function element-wise.
Hardshrink is defined as:
\[\begin{split}\text{HardShrink}(x) = \begin{cases} x, & \text{ if } x > \lambda \\ x, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases}\end{split}\]- Parameters:
lambd (
float
) – the \(\lambda\) value for the Hardshrink formulation. Default: 0.5
- Shape:
Input: \((*)\), where \(*\) means any number of dimensions.
Output: \((*)\), same shape as the input.
Examples:
>>> import brainpy as bp >>> import brainpy.math as bm >>> m = bp.dnn.Hardshrink() >>> input = bm.random.randn(2) >>> output = m(input)