coomv#
- class brainpy.math.sparse.coomv(data, row, col, vector, *, shape, rows_sorted=False, cols_sorted=False, transpose=False, method='cusparse')[source]#
Product of COO sparse matrix and a dense vector using cuSPARSE algorithm.
This function supports JAX transformations, including jit(), grad(), vmap() and pmap().
- Parameters:
data (ndarray, float) – An array of shape
(nse,)
.row (ndarray) – An array of shape
(nse,)
.col (ndarray) – An array of shape
(nse,)
and dtyperow.dtype
.vector (ndarray) – An array of shape
(shape[0] if transpose else shape[1],)
and dtypedata.dtype
.rows_sorted (bool) – Row index are sorted.
cols_sorted (bool) – Column index are sorted.
transpose (bool) – A boolean specifying whether to transpose the sparse matrix before computing.
method (str) – The method used to compute the matrix-vector multiplication.
- Returns:
y – An array of shape
(shape[1] if transpose else shape[0],)
representing the matrix vector product.- Return type:
ndarray