brainpy.neurons.AdExIF#
- class brainpy.neurons.AdExIF(*args, input_var=True, noise=None, spike_fun=None, **kwargs)[source]#
Adaptive exponential integrate-and-fire neuron model.
Model Descriptions
The adaptive exponential integrate-and-fire model, also called AdEx, is a spiking neuron model with two variables [1] [2].
\[\begin{split}\begin{aligned} \tau_m\frac{d V}{d t} &= - (V-V_{rest}) + \Delta_T e^{\frac{V-V_T}{\Delta_T}} - Rw + RI(t), \\ \tau_w \frac{d w}{d t} &=a(V-V_{rest}) - w \end{aligned}\end{split}\]once the membrane potential reaches the spike threshold,
\[\begin{split}V \rightarrow V_{reset}, \\ w \rightarrow w+b.\end{split}\]The first equation describes the dynamics of the membrane potential and includes an activation term with an exponential voltage dependence. Voltage is coupled to a second equation which describes adaptation. Both variables are reset if an action potential has been triggered. The combination of adaptation and exponential voltage dependence gives rise to the name Adaptive Exponential Integrate-and-Fire model.
The adaptive exponential integrate-and-fire model is capable of describing known neuronal firing patterns, e.g., adapting, bursting, delayed spike initiation, initial bursting, fast spiking, and regular spiking.
Model Examples
Model Parameters
Parameter
Init Value
Unit
Explanation
V_rest
-65
mV
Resting potential.
V_reset
-68
mV
Reset potential after spike.
V_th
-30
mV
Threshold potential of spike and reset.
V_T
-59.9
mV
Threshold potential of generating action potential.
delta_T
3.48
Spike slope factor.
a
1
The sensitivity of the recovery variable \(u\) to the sub-threshold fluctuations of the membrane potential \(v\)
b
1
The increment of \(w\) produced by a spike.
R
1
Membrane resistance.
tau
10
ms
Membrane time constant. Compute by R * C.
tau_w
30
ms
Time constant of the adaptation current.
tau_ref
ms
Refractory time.
Model Variables
Variables name
Initial Value
Explanation
V
0
Membrane potential.
w
0
Adaptation current.
input
0
External and synaptic input current.
spike
False
Flag to mark whether the neuron is spiking.
refractory
False
Flag to mark whether the neuron is in refractory period.
t_last_spike
-1e7
Last spike time stamp.
References
Methods
__init__
(*args[, input_var, noise, spike_fun])add_aft_update
(key, fun)Add the after update into this node
add_bef_update
(key, fun)Add the before update into this node
add_inp_fun
(key, fun)Add an input function.
clear_input
()Empty function of clearing inputs.
cpu
()Move all variable into the CPU device.
cuda
()Move all variables into the GPU device.
dV
(V, t, w, I)dw
(w, t, V)get_aft_update
(key)Get the after update of this node by the given
key
.get_batch_shape
([batch_size])get_bef_update
(key)Get the before update of this node by the given
key
.get_delay_data
(identifier, delay_pos, *indices)Get delay data according to the provided delay steps.
get_delay_var
(name)get_inp_fun
(key)Get the input function.
get_local_delay
(var_name, delay_name)Get the delay at the given identifier (name).
has_aft_update
(key)Whether this node has the after update of the given
key
.has_bef_update
(key)Whether this node has the before update of the given
key
.init_param
(param[, shape, sharding])Initialize parameters.
init_variable
(var_data, batch_or_mode[, ...])Initialize variables.
inv_scaling
(x[, scale])jit_step_run
(i, *args, **kwargs)The jitted step function for running.
load_state
(state_dict, **kwargs)Load states from a dictionary.
load_state_dict
(state_dict[, warn, compatible])Copy parameters and buffers from
state_dict
into this module and its descendants.nodes
([method, level, include_self])Collect all children nodes.
offset_scaling
(x[, bias, scale])register_delay
(identifier, delay_step, ...)Register delay variable.
register_implicit_nodes
(*nodes[, node_cls])register_implicit_vars
(*variables[, var_cls])register_local_delay
(var_name, delay_name[, ...])Register local relay at the given delay time.
reset
(*args, **kwargs)Reset function which reset the whole variables in the model (including its children models).
reset_local_delays
([nodes])Reset local delay variables.
reset_state
([batch_size])Reset function which resets local states in this model.
return_info
()save_state
(**kwargs)Save states as a dictionary.
setattr
(key, value)- rtype:
state_dict
(**kwargs)Returns a dictionary containing a whole state of the module.
std_scaling
(x[, scale])step_run
(i, *args, **kwargs)The step run function.
sum_inputs
(*args[, init, label])Summarize all inputs by the defined input functions
.cur_inputs
.to
(device)Moves all variables into the given device.
tpu
()Move all variables into the TPU device.
tracing_variable
(name, init, shape[, ...])Initialize the variable which can be traced during computations and transformations.
train_vars
([method, level, include_self])The shortcut for retrieving all trainable variables.
tree_flatten
()Flattens the object as a PyTree.
tree_unflatten
(aux, dynamic_values)Unflatten the data to construct an object of this class.
unique_name
([name, type_])Get the unique name for this object.
update
([x])The function to specify the updating rule.
update_local_delays
([nodes])Update local delay variables.
vars
([method, level, include_self, ...])Collect all variables in this node and the children nodes.
Attributes
derivative
mode
Mode of the model, which is useful to control the multiple behaviors of the model.
name
Name of the model.
spk_dtype
supported_modes
Supported computing modes.
varshape
The shape of variables in the neuron group.
cur_inputs