brainpy.neurons.AdExIF

brainpy.neurons.AdExIF#

class brainpy.neurons.AdExIF(*args, input_var=True, spike_fun=None, **kwargs)[source]#

Adaptive exponential integrate-and-fire neuron model.

Model Descriptions

The adaptive exponential integrate-and-fire model, also called AdEx, is a spiking neuron model with two variables [1] [2].

\[\begin{split}\begin{aligned} \tau_m\frac{d V}{d t} &= - (V-V_{rest}) + \Delta_T e^{\frac{V-V_T}{\Delta_T}} - Rw + RI(t), \\ \tau_w \frac{d w}{d t} &=a(V-V_{rest}) - w \end{aligned}\end{split}\]

once the membrane potential reaches the spike threshold,

\[\begin{split}V \rightarrow V_{reset}, \\ w \rightarrow w+b.\end{split}\]

The first equation describes the dynamics of the membrane potential and includes an activation term with an exponential voltage dependence. Voltage is coupled to a second equation which describes adaptation. Both variables are reset if an action potential has been triggered. The combination of adaptation and exponential voltage dependence gives rise to the name Adaptive Exponential Integrate-and-Fire model.

The adaptive exponential integrate-and-fire model is capable of describing known neuronal firing patterns, e.g., adapting, bursting, delayed spike initiation, initial bursting, fast spiking, and regular spiking.

Model Examples

Model Parameters

Parameter

Init Value

Unit

Explanation

V_rest

-65

mV

Resting potential.

V_reset

-68

mV

Reset potential after spike.

V_th

-30

mV

Threshold potential of spike and reset.

V_T

-59.9

mV

Threshold potential of generating action potential.

delta_T

3.48

Spike slope factor.

a

1

The sensitivity of the recovery variable \(u\) to the sub-threshold fluctuations of the membrane potential \(v\)

b

1

The increment of \(w\) produced by a spike.

R

1

Membrane resistance.

tau

10

ms

Membrane time constant. Compute by R * C.

tau_w

30

ms

Time constant of the adaptation current.

tau_ref

ms

Refractory time.

Model Variables

Variables name

Initial Value

Explanation

V

0

Membrane potential.

w

0

Adaptation current.

input

0

External and synaptic input current.

spike

False

Flag to mark whether the neuron is spiking.

refractory

False

Flag to mark whether the neuron is in refractory period.

t_last_spike

-1e7

Last spike time stamp.

References

__init__(*args, input_var=True, spike_fun=None, **kwargs)[source]#

Methods

__init__(*args[, input_var, spike_fun])

add_aft_update(key, fun)

Add the after update into this node

add_bef_update(key, fun)

Add the before update into this node

add_inp_fun(key, fun[, label, category])

Add an input function.

clear_input()

Empty function of clearing inputs.

cpu()

Move all variable into the CPU device.

cuda()

Move all variables into the GPU device.

dV(V, t, w, I)

dw(w, t, V)

get_aft_update(key)

Get the after update of this node by the given key.

get_batch_shape([batch_size])

get_bef_update(key)

Get the before update of this node by the given key.

get_delay_data(identifier, delay_pos, *indices)

Get delay data according to the provided delay steps.

get_delay_var(name)

get_inp_fun(key)

Get the input function.

get_local_delay(var_name, delay_name)

Get the delay at the given identifier (name).

has_aft_update(key)

Whether this node has the after update of the given key.

has_bef_update(key)

Whether this node has the before update of the given key.

init_param(param[, shape, sharding])

Initialize parameters.

init_variable(var_data, batch_or_mode[, ...])

Initialize variables.

inv_scaling(x[, scale])

jit_step_run(i, *args, **kwargs)

The jitted step function for running.

load_state(state_dict, **kwargs)

Load states from a dictionary.

load_state_dict(state_dict[, warn, compatible])

Copy parameters and buffers from state_dict into this module and its descendants.

nodes([method, level, include_self])

Collect all children nodes.

offset_scaling(x[, bias, scale])

register_delay(identifier, delay_step, ...)

Register delay variable.

register_implicit_nodes(*nodes[, node_cls])

register_implicit_vars(*variables[, var_cls])

register_local_delay(var_name, delay_name[, ...])

Register local relay at the given delay time.

reset(*args, **kwargs)

Reset function which reset the whole variables in the model (including its children models).

reset_local_delays([nodes])

Reset local delay variables.

reset_state([batch_size])

return_info()

save_state(**kwargs)

Save states as a dictionary.

setattr(key, value)

rtype:

None

state_dict(**kwargs)

Returns a dictionary containing a whole state of the module.

std_scaling(x[, scale])

step_run(i, *args, **kwargs)

The step run function.

sum_current_inputs(*args[, init, label])

Summarize all current inputs by the defined input functions .current_inputs.

sum_delta_inputs(*args[, init, label])

Summarize all delta inputs by the defined input functions .delta_inputs.

sum_inputs(*args, **kwargs)

to(device)

Moves all variables into the given device.

tpu()

Move all variables into the TPU device.

tracing_variable(name, init, shape[, ...])

Initialize the variable which can be traced during computations and transformations.

train_vars([method, level, include_self])

The shortcut for retrieving all trainable variables.

tree_flatten()

Flattens the object as a PyTree.

tree_unflatten(aux, dynamic_values)

Unflatten the data to construct an object of this class.

unique_name([name, type_])

Get the unique name for this object.

update([x])

The function to specify the updating rule.

update_local_delays([nodes])

Update local delay variables.

vars([method, level, include_self, ...])

Collect all variables in this node and the children nodes.

Attributes

after_updates

before_updates

cur_inputs

current_inputs

delta_inputs

derivative

implicit_nodes

implicit_vars

mode

Mode of the model, which is useful to control the multiple behaviors of the model.

name

Name of the model.

spk_dtype

supported_modes

Supported computing modes.

varshape

The shape of variables in the neuron group.