brainpy.neurons.MorrisLecar#
- class brainpy.neurons.MorrisLecar(*args, input_var=True, **kwargs)[source]#
The Morris-Lecar neuron model.
Model Descriptions
The Morris-Lecar model [4] (Also known as \(I_{Ca}+I_K\)-model) is a two-dimensional “reduced” excitation model applicable to systems having two non-inactivating voltage-sensitive conductances. This model was named after Cathy Morris and Harold Lecar, who derived it in 1981. Because it is two-dimensional, the Morris-Lecar model is one of the favorite conductance-based models in computational neuroscience.
The original form of the model employed an instantaneously responding voltage-sensitive Ca2+ conductance for excitation and a delayed voltage-dependent K+ conductance for recovery. The equations of the model are:
\[\begin{split}\begin{aligned} C\frac{dV}{dt} =& - g_{Ca} M_{\infty} (V - V_{Ca})- g_{K} W(V - V_{K}) - g_{Leak} (V - V_{Leak}) + I_{ext} \\ \frac{dW}{dt} =& \frac{W_{\infty}(V) - W}{ \tau_W(V)} \end{aligned}\end{split}\]Here, \(V\) is the membrane potential, \(W\) is the “recovery variable”, which is almost invariably the normalized \(K^+\)-ion conductance, and \(I_{ext}\) is the applied current stimulus.
Model Examples
>>> import brainpy as bp >>> >>> group = bp.neurons.MorrisLecar(1) >>> runner = bp.DSRunner(group, monitors=['V', 'W'], inputs=('input', 100.)) >>> runner.run(1000) >>> >>> fig, gs = bp.visualize.get_figure(2, 1, 3, 8) >>> fig.add_subplot(gs[0, 0]) >>> bp.visualize.line_plot(runner.mon.ts, runner.mon.W, ylabel='W') >>> fig.add_subplot(gs[1, 0]) >>> bp.visualize.line_plot(runner.mon.ts, runner.mon.V, ylabel='V', show=True)
Model Parameters
Parameter
Init Value
Unit
Explanation
V_Ca
130
mV
Equilibrium potentials of Ca+.(mV)
g_Ca
4.4
Maximum conductance of corresponding Ca+.(mS/cm2)
V_K
-84
mV
Equilibrium potentials of K+.(mV)
g_K
8
Maximum conductance of corresponding K+.(mS/cm2)
V_Leak
-60
mV
Equilibrium potentials of leak current.(mV)
g_Leak
2
Maximum conductance of leak current.(mS/cm2)
C
20
Membrane capacitance.(uF/cm2)
V1
-1.2
Potential at which M_inf = 0.5.(mV)
V2
18
Reciprocal of slope of voltage dependence of M_inf.(mV)
V3
2
Potential at which W_inf = 0.5.(mV)
V4
30
Reciprocal of slope of voltage dependence of W_inf.(mV)
phi
0.04
A temperature factor. (1/s)
V_th
10
mV
The spike threshold.
References
Methods
__init__
(*args[, input_var])add_aft_update
(key, fun)Add the after update into this node
add_bef_update
(key, fun)Add the before update into this node
add_inp_fun
(key, fun[, label, category])Add an input function.
clear_input
()Empty function of clearing inputs.
cpu
()Move all variable into the CPU device.
cuda
()Move all variables into the GPU device.
dV
(V, t, W, I)dW
(W, t, V)get_aft_update
(key)Get the after update of this node by the given
key
.get_batch_shape
([batch_size])get_bef_update
(key)Get the before update of this node by the given
key
.get_delay_data
(identifier, delay_pos, *indices)Get delay data according to the provided delay steps.
get_delay_var
(name)get_inp_fun
(key)Get the input function.
get_local_delay
(var_name, delay_name)Get the delay at the given identifier (name).
has_aft_update
(key)Whether this node has the after update of the given
key
.has_bef_update
(key)Whether this node has the before update of the given
key
.init_param
(param[, shape, sharding])Initialize parameters.
init_variable
(var_data, batch_or_mode[, ...])Initialize variables.
jit_step_run
(i, *args, **kwargs)The jitted step function for running.
load_state
(state_dict, **kwargs)Load states from a dictionary.
load_state_dict
(state_dict[, warn, compatible])Copy parameters and buffers from
state_dict
into this module and its descendants.nodes
([method, level, include_self])Collect all children nodes.
register_delay
(identifier, delay_step, ...)Register delay variable.
register_implicit_nodes
(*nodes[, node_cls])register_implicit_vars
(*variables[, var_cls])register_local_delay
(var_name, delay_name[, ...])Register local relay at the given delay time.
reset
(*args, **kwargs)Reset function which reset the whole variables in the model (including its children models).
reset_local_delays
([nodes])Reset local delay variables.
reset_state
([batch_size])return_info
()save_state
(**kwargs)Save states as a dictionary.
setattr
(key, value)- rtype:
state_dict
(**kwargs)Returns a dictionary containing a whole state of the module.
step_run
(i, *args, **kwargs)The step run function.
sum_current_inputs
(*args[, init, label])Summarize all current inputs by the defined input functions
.current_inputs
.sum_delta_inputs
(*args[, init, label])Summarize all delta inputs by the defined input functions
.delta_inputs
.sum_inputs
(*args, **kwargs)to
(device)Moves all variables into the given device.
tpu
()Move all variables into the TPU device.
tracing_variable
(name, init, shape[, ...])Initialize the variable which can be traced during computations and transformations.
train_vars
([method, level, include_self])The shortcut for retrieving all trainable variables.
tree_flatten
()Flattens the object as a PyTree.
tree_unflatten
(aux, dynamic_values)Unflatten the data to construct an object of this class.
unique_name
([name, type_])Get the unique name for this object.
update
([x])The function to specify the updating rule.
update_local_delays
([nodes])Update local delay variables.
vars
([method, level, include_self, ...])Collect all variables in this node and the children nodes.
Attributes
after_updates
before_updates
cur_inputs
current_inputs
delta_inputs
derivative
implicit_nodes
implicit_vars
mode
Mode of the model, which is useful to control the multiple behaviors of the model.
name
Name of the model.
supported_modes
Supported computing modes.
varshape
The shape of variables in the neuron group.