brainpy.neurons.MorrisLecar

brainpy.neurons.MorrisLecar#

class brainpy.neurons.MorrisLecar(*args, input_var=True, **kwargs)[source]#

The Morris-Lecar neuron model.

Model Descriptions

The Morris-Lecar model [4] (Also known as \(I_{Ca}+I_K\)-model) is a two-dimensional “reduced” excitation model applicable to systems having two non-inactivating voltage-sensitive conductances. This model was named after Cathy Morris and Harold Lecar, who derived it in 1981. Because it is two-dimensional, the Morris-Lecar model is one of the favorite conductance-based models in computational neuroscience.

The original form of the model employed an instantaneously responding voltage-sensitive Ca2+ conductance for excitation and a delayed voltage-dependent K+ conductance for recovery. The equations of the model are:

\[\begin{split}\begin{aligned} C\frac{dV}{dt} =& - g_{Ca} M_{\infty} (V - V_{Ca})- g_{K} W(V - V_{K}) - g_{Leak} (V - V_{Leak}) + I_{ext} \\ \frac{dW}{dt} =& \frac{W_{\infty}(V) - W}{ \tau_W(V)} \end{aligned}\end{split}\]

Here, \(V\) is the membrane potential, \(W\) is the “recovery variable”, which is almost invariably the normalized \(K^+\)-ion conductance, and \(I_{ext}\) is the applied current stimulus.

Model Examples

>>> import brainpy as bp
>>>
>>> group = bp.neurons.MorrisLecar(1)
>>> runner = bp.DSRunner(group, monitors=['V', 'W'], inputs=('input', 100.))
>>> runner.run(1000)
>>>
>>> fig, gs = bp.visualize.get_figure(2, 1, 3, 8)
>>> fig.add_subplot(gs[0, 0])
>>> bp.visualize.line_plot(runner.mon.ts, runner.mon.W, ylabel='W')
>>> fig.add_subplot(gs[1, 0])
>>> bp.visualize.line_plot(runner.mon.ts, runner.mon.V, ylabel='V', show=True)

Model Parameters

Parameter

Init Value

Unit

Explanation

V_Ca

130

mV

Equilibrium potentials of Ca+.(mV)

g_Ca

4.4

Maximum conductance of corresponding Ca+.(mS/cm2)

V_K

-84

mV

Equilibrium potentials of K+.(mV)

g_K

8

Maximum conductance of corresponding K+.(mS/cm2)

V_Leak

-60

mV

Equilibrium potentials of leak current.(mV)

g_Leak

2

Maximum conductance of leak current.(mS/cm2)

C

20

Membrane capacitance.(uF/cm2)

V1

-1.2

Potential at which M_inf = 0.5.(mV)

V2

18

Reciprocal of slope of voltage dependence of M_inf.(mV)

V3

2

Potential at which W_inf = 0.5.(mV)

V4

30

Reciprocal of slope of voltage dependence of W_inf.(mV)

phi

0.04

A temperature factor. (1/s)

V_th

10

mV

The spike threshold.

References

__init__(*args, input_var=True, **kwargs)[source]#

Methods

__init__(*args[, input_var])

add_aft_update(key, fun)

Add the after update into this node

add_bef_update(key, fun)

Add the before update into this node

add_inp_fun(key, fun[, label, category])

Add an input function.

clear_input()

Empty function of clearing inputs.

cpu()

Move all variable into the CPU device.

cuda()

Move all variables into the GPU device.

dV(V, t, W, I)

dW(W, t, V)

get_aft_update(key)

Get the after update of this node by the given key.

get_batch_shape([batch_size])

get_bef_update(key)

Get the before update of this node by the given key.

get_delay_data(identifier, delay_pos, *indices)

Get delay data according to the provided delay steps.

get_delay_var(name)

get_inp_fun(key)

Get the input function.

get_local_delay(var_name, delay_name)

Get the delay at the given identifier (name).

has_aft_update(key)

Whether this node has the after update of the given key.

has_bef_update(key)

Whether this node has the before update of the given key.

init_param(param[, shape, sharding])

Initialize parameters.

init_variable(var_data, batch_or_mode[, ...])

Initialize variables.

jit_step_run(i, *args, **kwargs)

The jitted step function for running.

load_state(state_dict, **kwargs)

Load states from a dictionary.

load_state_dict(state_dict[, warn, compatible])

Copy parameters and buffers from state_dict into this module and its descendants.

nodes([method, level, include_self])

Collect all children nodes.

register_delay(identifier, delay_step, ...)

Register delay variable.

register_implicit_nodes(*nodes[, node_cls])

register_implicit_vars(*variables[, var_cls])

register_local_delay(var_name, delay_name[, ...])

Register local relay at the given delay time.

reset(*args, **kwargs)

Reset function which reset the whole variables in the model (including its children models).

reset_local_delays([nodes])

Reset local delay variables.

reset_state([batch_size])

return_info()

save_state(**kwargs)

Save states as a dictionary.

setattr(key, value)

rtype:

None

state_dict(**kwargs)

Returns a dictionary containing a whole state of the module.

step_run(i, *args, **kwargs)

The step run function.

sum_current_inputs(*args[, init, label])

Summarize all current inputs by the defined input functions .current_inputs.

sum_delta_inputs(*args[, init, label])

Summarize all delta inputs by the defined input functions .delta_inputs.

sum_inputs(*args, **kwargs)

to(device)

Moves all variables into the given device.

tpu()

Move all variables into the TPU device.

tracing_variable(name, init, shape[, ...])

Initialize the variable which can be traced during computations and transformations.

train_vars([method, level, include_self])

The shortcut for retrieving all trainable variables.

tree_flatten()

Flattens the object as a PyTree.

tree_unflatten(aux, dynamic_values)

Unflatten the data to construct an object of this class.

unique_name([name, type_])

Get the unique name for this object.

update([x])

The function to specify the updating rule.

update_local_delays([nodes])

Update local delay variables.

vars([method, level, include_self, ...])

Collect all variables in this node and the children nodes.

Attributes

after_updates

before_updates

cur_inputs

current_inputs

delta_inputs

derivative

implicit_nodes

implicit_vars

mode

Mode of the model, which is useful to control the multiple behaviors of the model.

name

Name of the model.

supported_modes

Supported computing modes.

varshape

The shape of variables in the neuron group.