# INa_Ba2002#

class brainpy.dyn.INa_Ba2002(size, keep_size=False, T=36.0, E=50.0, g_max=90.0, V_sh=-50.0, method='exp_auto', name=None, mode=None)[source]#

The sodium current model.

The sodium current model is adopted from (Bazhenov, et, al. 2002) [1]. It’s dynamics is given by:

\begin{split}\begin{aligned} I_{\mathrm{Na}} &= g_{\mathrm{max}} * p^3 * q \\ \frac{dp}{dt} &= \phi ( \alpha_p (1-p) - \beta_p p) \\ \alpha_{p} &=\frac{0.32\left(V-V_{sh}-13\right)}{1-\exp \left(-\left(V-V_{sh}-13\right) / 4\right)} \\ \beta_{p} &=\frac{-0.28\left(V-V_{sh}-40\right)}{1-\exp \left(\left(V-V_{sh}-40\right) / 5\right)} \\ \frac{dq}{dt} & = \phi ( \alpha_q (1-h) - \beta_q h) \\ \alpha_q &=0.128 \exp \left(-\left(V-V_{sh}-17\right) / 18\right) \\ \beta_q &= \frac{4}{1+\exp \left(-\left(V-V_{sh}-40\right) / 5\right)} \end{aligned}\end{split}

where $$\phi$$ is a temperature-dependent factor, which is given by $$\phi=3^{\frac{T-36}{10}}$$ ($$T$$ is the temperature in Celsius).

Parameters:
• g_max (float, ArrayType, Callable, Initializer) – The maximal conductance density ($$mS/cm^2$$).

• E (float, ArrayType, Callable, Initializer) – The reversal potential (mV).

• T (float, ArrayType) – The temperature (Celsius, $$^{\circ}C$$).

• V_sh (float, ArrayType, Callable, Initializer) – The shift of the membrane potential to spike.

References