class brainpy.dyn.IKDR_Ba2002v2(size, keep_size=False, g_max=10.0, V_sh=-50.0, T_base=3.0, T=36.0, phi=None, method='exp_auto', name=None, mode=None)[source]#

The delayed rectifier potassium channel current.

The potassium current model is adopted from (Bazhenov, et, al. 2002) [1]. It’s dynamics is given by:

\[\begin{split}\begin{aligned} I_{\mathrm{K}} &= g_{\mathrm{max}} * p^4 \\ \frac{dp}{dt} &= \phi * (\alpha_p (1-p) - \beta_p p) \\ \alpha_{p} &=\frac{0.032\left(V-V_{sh}-15\right)}{1-\exp \left(-\left(V-V_{sh}-15\right) / 5\right)} \\ \beta_p &= 0.5 \exp \left(-\left(V-V_{sh}-10\right) / 40\right) \end{aligned}\end{split}\]

where \(\phi\) is a temperature-dependent factor, which is given by \(\phi=3^{\frac{T-36}{10}}\) (\(T\) is the temperature in Celsius).

  • size (int, sequence of int) – The object size.

  • keep_size (bool) – Whether we use size to initialize the variable. Otherwise, variable shape will be initialized as num.

  • g_max (float, ArrayType, Initializer, Callable) – The maximal conductance density (\(mS/cm^2\)).

  • E (float, ArrayType, Initializer, Callable) – The reversal potential (mV).

  • T_base (float, ArrayType) – The brainpy_object of temperature factor.

  • T (float, ArrayType, Initializer, Callable) – The temperature (Celsius, \(^{\circ}C\)).

  • V_sh (float, ArrayType, Initializer, Callable) – The shift of the membrane potential to spike.

  • method (str) – The numerical integration method.

  • name (str) – The object name.



alias of Potassium