Softshrink#
- class brainpy.dnn.Softshrink(lambd=0.5)[source]#
Applies the soft shrinkage function elementwise:
\[\begin{split}\text{SoftShrinkage}(x) = \begin{cases} x - \lambda, & \text{ if } x > \lambda \\ x + \lambda, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases}\end{split}\]- Parameters:
lambd (
float
) – the \(\lambda\) (must be no less than zero) value for the Softshrink formulation. Default: 0.5
- Shape:
Input: \((*)\), where \(*\) means any number of dimensions.
Output: \((*)\), same shape as the input.
Examples:
>>> import brainpy as bp >>> import brainpy.math as bm >>> m = bp.dnn.Softshrink() >>> input = bm.random.randn(2) >>> output = m(input)