WilsonCowanModel#
- class brainpy.dyn.WilsonCowanModel(size, keep_size=False, E_tau=1.0, E_a=1.2, E_theta=2.8, I_tau=1.0, I_a=1.0, I_theta=4.0, wEE=12.0, wIE=4.0, wEI=13.0, wII=11.0, r=1.0, x_ou_mean=0.0, x_ou_sigma=0.0, x_ou_tau=5.0, y_ou_mean=0.0, y_ou_sigma=0.0, y_ou_tau=5.0, x_initializer=Uniform(min_val=0.0, max_val=0.05, rng=[ 479025946 4206239744]), y_initializer=Uniform(min_val=0.0, max_val=0.05, rng=[ 479025946 4206239744]), method='exp_euler_auto', name=None, mode=None, input_var=True)[source]#
Wilson-Cowan population model.
- Parameters:
x_ou_mean (Parameter) – The noise mean of the \(x\) variable, [mV/ms]
y_ou_mean (Parameter) – The noise mean of the \(y\) variable, [mV/ms].
x_ou_sigma (Parameter) – The noise intensity of the \(x\) variable, [mV/ms/sqrt(ms)].
y_ou_sigma (Parameter) – The noise intensity of the \(y\) variable, [mV/ms/sqrt(ms)].
x_ou_tau (Parameter) – The timescale of the Ornstein-Uhlenbeck noise process of \(x\) variable, [ms].
y_ou_tau (Parameter) – The timescale of the Ornstein-Uhlenbeck noise process of \(y\) variable, [ms].
- reset_state(batch_or_mode=None, **kwargs)[source]#
Reset function which resets local states in this model.
Simply speaking, this function should implement the logic of resetting of local variables in this node.
See https://brainpy.readthedocs.io/en/latest/tutorial_toolbox/state_resetting.html for details.