DualExponV2#
- class brainpy.dyn.DualExponV2(size, keep_size=False, sharding=None, method='exp_auto', name=None, mode=None, tau_decay=10.0, tau_rise=1.0)[source]#
Dual exponential synapse model.
The dual exponential synapse model [1], also named as difference of two exponentials model, is given by:
\[g_{\mathrm{syn}}(t)=g_{\mathrm{max}} \frac{\tau_{1} \tau_{2}}{ \tau_{1}-\tau_{2}}\left(\exp \left(-\frac{t-t_{0}}{\tau_{1}}\right) -\exp \left(-\frac{t-t_{0}}{\tau_{2}}\right)\right)\]where \(\tau_1\) is the time constant of the decay phase, \(\tau_2\) is the time constant of the rise phase, \(t_0\) is the time of the pre-synaptic spike, \(g_{\mathrm{max}}\) is the maximal conductance.
This module can be used with interface
brainpy.dyn.ProjAlignPreMg2
, as shown in the following example:import numpy as np import brainpy as bp import brainpy.math as bm import matplotlib.pyplot as plt class DualExponV2SparseCOBA(bp.Projection): def __init__(self, pre, post, delay, prob, g_max, tau_decay, tau_rise, E): super().__init__() self.proj = bp.dyn.ProjAlignPreMg2( pre=pre, delay=delay, syn=bp.dyn.DualExponV2.desc(pre.num, tau_decay=tau_decay, tau_rise=tau_rise), comm=bp.dnn.CSRLinear(bp.conn.FixedProb(prob, pre=pre.num, post=post.num), g_max), out=bp.dyn.COBA(E=E), post=post, ) class SimpleNet(bp.DynSysGroup): def __init__(self, syn_cls, E=0.): super().__init__() self.pre = bp.dyn.SpikeTimeGroup(1, indices=(0, 0, 0, 0), times=(10., 30., 50., 70.)) self.post = bp.dyn.LifRef(1, V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5., V_initializer=bp.init.Constant(-60.)) self.syn = syn_cls(self.pre, self.post, delay=None, prob=1., g_max=1., tau_decay=5., tau_rise=1., E=E) def update(self): self.pre() self.syn() self.post() # monitor the following variables conductance = self.syn.proj.refs['syn'].g_rise current = self.post.sum_inputs(self.post.V) return conductance, current, self.post.V indices = np.arange(1000) # 100 ms, dt= 0.1 ms net = SimpleNet(DualExponV2SparseCOBAPost, E=0.) conductances, currents, potentials = bm.for_loop(net.step_run, indices, progress_bar=True) ts = indices * bm.get_dt() fig, gs = bp.visualize.get_figure(1, 3, 3.5, 4) fig.add_subplot(gs[0, 0]) plt.plot(ts, conductances) plt.title('Syn conductance') fig.add_subplot(gs[0, 1]) plt.plot(ts, currents) plt.title('Syn current') fig.add_subplot(gs[0, 2]) plt.plot(ts, potentials) plt.title('Post V') plt.show()
Moreover, it can also be used with interface
ProjAlignPostMg2
:class DualExponV2SparseCOBAPost(bp.Projection): def __init__(self, pre, post, delay, prob, g_max, tau_decay, tau_rise, E): super().__init__() self.proj = bp.dyn.ProjAlignPostMg2( pre=pre, delay=delay, comm=bp.dnn.EventCSRLinear(bp.conn.FixedProb(prob, pre=pre.num, post=post.num), g_max), syn=bp.dyn.DualExponV2.desc(post.num, tau_decay=tau_decay, tau_rise=tau_rise), out=bp.dyn.COBA.desc(E=E), post=post, )
- Parameters:
tau_decay (
Union
[float
,TypeVar
(ArrayType
,Array
,Variable
,TrainVar
,Array
,ndarray
),Callable
]) – float, ArrayArray, Callable. The time constant of the synaptic decay phase. [ms]tau_rise (
Union
[float
,TypeVar
(ArrayType
,Array
,Variable
,TrainVar
,Array
,ndarray
),Callable
]) – float, ArrayArray, Callable. The time constant of the synaptic rise phase. [ms]size (
Union
[int
,Sequence
[int
]]) – int, or sequence of int. The neuronal population size.keep_size (
bool
) – bool. Keep the neuron group size.
- reset_state(batch_or_mode=None, **kwargs)[source]#
Reset function which resets local states in this model.
Simply speaking, this function should implement the logic of resetting of local variables in this node.
See https://brainpy.readthedocs.io/en/latest/tutorial_toolbox/state_resetting.html for details.