softplus#
- class brainpy.math.softplus(x, beta=1.0, threshold=20.0)[source]#
Softplus activation function.
Computes the element-wise function
\[\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))\]SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.
For numerical stability the implementation reverts to the linear function when \(input \times \beta > threshold\).
- Parameters:
x (The input array.)
beta (the \(\beta\) value for the Softplus formulation. Default: 1.)
threshold (values above this revert to a linear function. Default: 20.)