AdExIFRefLTC#
- class brainpy.dyn.AdExIFRefLTC(size, sharding=None, keep_size=False, mode=None, spk_fun=InvSquareGrad(alpha=100.0), spk_dtype=None, spk_reset='soft', detach_spk=False, method='exp_auto', name=None, init_var=True, scaling=None, V_rest=-65.0, V_reset=-68.0, V_th=-55.0, V_T=-59.9, delta_T=3.48, a=1.0, b=1.0, tau=10.0, tau_w=30.0, R=1.0, V_initializer=ZeroInit, w_initializer=ZeroInit, tau_ref=0.0, ref_var=False, noise=None)[source]#
Adaptive exponential integrate-and-fire neuron model with liquid time-constant.
Model Descriptions
The adaptive exponential integrate-and-fire model, also called AdEx, is a spiking neuron model with two variables [1] [2].
\[\begin{split}\begin{aligned} \tau_m\frac{d V}{d t} &= - (V-V_{rest}) + \Delta_T e^{\frac{V-V_T}{\Delta_T}} - Rw + RI(t), \\ \tau_w \frac{d w}{d t} &=a(V-V_{rest}) - w \end{aligned}\end{split}\]once the membrane potential reaches the spike threshold,
\[\begin{split}V \rightarrow V_{reset}, \\ w \rightarrow w+b.\end{split}\]The first equation describes the dynamics of the membrane potential and includes an activation term with an exponential voltage dependence. Voltage is coupled to a second equation which describes adaptation. Both variables are reset if an action potential has been triggered. The combination of adaptation and exponential voltage dependence gives rise to the name Adaptive Exponential Integrate-and-Fire model.
The adaptive exponential integrate-and-fire model is capable of describing known neuronal firing patterns, e.g., adapting, bursting, delayed spike initiation, initial bursting, fast spiking, and regular spiking.
References
Examples
An example usage:
import brainpy as bp neu = bp.dyn.AdExIFRefLTC(2) # section input with wiener process inp1 = bp.inputs.wiener_process(500., n=1, t_start=100., t_end=400.).flatten() inputs = bp.inputs.section_input([0., 22., 0.], [100., 300., 100.]) + inp1 runner = bp.DSRunner(neu, monitors=['V']) runner.run(inputs=inputs) bp.visualize.line_plot(runner.mon['ts'], runner.mon['V'], plot_ids=(0, 1), show=True)
Model Examples
Model Parameters
Parameter
Init Value
Unit
Explanation
V_rest
-65
mV
Resting potential.
V_reset
-68
mV
Reset potential after spike.
V_th
-30
mV
Threshold potential of spike and reset.
V_T
-59.9
mV
Threshold potential of generating action potential.
delta_T
3.48
Spike slope factor.
a
1
The sensitivity of the recovery variable \(u\) to the sub-threshold fluctuations of the membrane potential \(v\)
b
1
The increment of \(w\) produced by a spike.
R
1
Membrane resistance.
tau
10
ms
Membrane time constant. Compute by R * C.
tau_w
30
ms
Time constant of the adaptation current.
tau_ref
ms
Refractory time.
Model Variables
Variables name
Initial Value
Explanation
V
0
Membrane potential.
w
0
Adaptation current.
input
0
External and synaptic input current.
spike
False
Flag to mark whether the neuron is spiking.
refractory
False
Flag to mark whether the neuron is in refractory period.
t_last_spike
-1e7
Last spike time stamp.
- Parameters:
size (
TypeVar
(Shape
,int
,Tuple
[int
,...
])) – int, or sequence of int. The neuronal population size.sharding (
Union
[Sequence
[str
],Device
,Sharding
,None
]) – The sharding strategy.keep_size (
bool
) – bool. Keep the neuron group size.spk_fun (
Callable
) – callable. The spike activation function.detach_spk (
bool
) – bool.method (
str
) – str. The numerical integration method.spk_type – The spike data type.
spk_reset (
str
) – The way to reset the membrane potential when the neuron generates spikes. This parameter only works when the computing mode isTrainingMode
. It can besoft
andhard
. Default issoft
.tau_ref (
Union
[float
,TypeVar
(ArrayType
,Array
,Variable
,TrainVar
,Array
,ndarray
),Callable
]) – float, ArrayType, callable. Refractory period length (ms).has_ref_var – bool. Whether has the refractory variable. Default is
False
.