hessian#
- class brainpy.math.hessian(func, grad_vars=None, argnums=None, return_value=False, holomorphic=False, dyn_vars=None, child_objs=None)[source]#
Hessian of
func
as a dense array.- Parameters:
func (callable, function) – Function whose Hessian is to be computed. Its arguments at positions specified by
argnums
should be arrays, scalars, or standard Python containers thereof. It should return arrays, scalars, or standard Python containers thereof.grad_vars (optional, ArrayCollector, sequence of ArrayType) – The variables required to compute their gradients.
argnums (Optional, integer or sequence of integers) – Specifies which positional argument(s) to differentiate with respect to (default
0
).holomorphic (bool) – Indicates whether
fun
is promised to be holomorphic. Default False.return_value (bool) – Whether return the hessian values.
dyn_vars (optional, ArrayType, sequence of ArrayType, dict) –
The dynamically changed variables used in
func
.Deprecated since version 2.4.0: No longer need to provide
dyn_vars
. This function is capable of automatically collecting the dynamical variables used in the targetfunc
.child_objs (optional, BrainPyObject, sequnce, dict) –
New in version 2.3.1.
Deprecated since version 2.4.0: No longer need to provide
child_objs
. This function is capable of automatically collecting the children objects used in the targetfunc
.
- Returns:
obj – The transformed object.
- Return type:
ObjectTransform