brainpy.synapses.DualExponential#
- class brainpy.synapses.DualExponential(pre, post, conn, stp=None, output=None, comp_method='dense', g_max=1.0, tau_decay=10.0, tau_rise=1.0, delay_step=None, method='exp_auto', name=None, mode=None, stop_spike_gradient=False)[source]#
Dual exponential synapse model.
Model Descriptions
The dual exponential synapse model [1], also named as difference of two exponentials model, is given by:
\[g_{\mathrm{syn}}(t)=g_{\mathrm{max}} \frac{\tau_{1} \tau_{2}}{ \tau_{1}-\tau_{2}}\left(\exp \left(-\frac{t-t_{0}}{\tau_{1}}\right) -\exp \left(-\frac{t-t_{0}}{\tau_{2}}\right)\right)\]where \(\tau_1\) is the time constant of the decay phase, \(\tau_2\) is the time constant of the rise phase, \(t_0\) is the time of the pre-synaptic spike, \(g_{\mathrm{max}}\) is the maximal conductance.
However, in practice, this formula is hard to implement. The equivalent solution is two coupled linear differential equations [2]:
\[\begin{split}\begin{aligned} &g_{\mathrm{syn}}(t)=g_{\mathrm{max}} g * \mathrm{STP} \\ &\frac{d g}{d t}=-\frac{g}{\tau_{\mathrm{decay}}}+h \\ &\frac{d h}{d t}=-\frac{h}{\tau_{\text {rise }}}+ \delta\left(t_{0}-t\right), \end{aligned}\end{split}\]where \(\mathrm{STP}\) is used to model the short-term plasticity effect of synapses.
Model Examples
>>> import brainpy as bp >>> from brainpy import neurons, synapses, synouts >>> import matplotlib.pyplot as plt >>> >>> neu1 = neurons.LIF(1) >>> neu2 = neurons.LIF(1) >>> syn1 = synapses.DualExponential(neu1, neu2, bp.connect.All2All(), output=synouts.CUBA()) >>> net = bp.Network(pre=neu1, syn=syn1, post=neu2) >>> >>> runner = bp.DSRunner(net, inputs=[('pre.input', 25.)], monitors=['pre.V', 'post.V', 'syn.g', 'syn.h']) >>> runner.run(150.) >>> >>> fig, gs = bp.visualize.get_figure(2, 1, 3, 8) >>> fig.add_subplot(gs[0, 0]) >>> plt.plot(runner.mon.ts, runner.mon['pre.V'], label='pre-V') >>> plt.plot(runner.mon.ts, runner.mon['post.V'], label='post-V') >>> plt.legend() >>> >>> fig.add_subplot(gs[1, 0]) >>> plt.plot(runner.mon.ts, runner.mon['syn.g'], label='g') >>> plt.plot(runner.mon.ts, runner.mon['syn.h'], label='h') >>> plt.legend() >>> plt.show()
- Parameters:
pre (NeuDyn) – The pre-synaptic neuron group.
post (NeuDyn) – The post-synaptic neuron group.
conn (optional, ArrayType, dict of (str, ndarray), TwoEndConnector) – The synaptic connections.
comp_method (str) – The connection type used for model speed optimization. It can be sparse and dense. The default is sparse.
delay_step (int, ArrayType, Initializer, Callable) – The delay length. It should be the value of \(\mathrm{delay\_time / dt}\).
tau_decay (float, ArrayArray, ndarray) – The time constant of the synaptic decay phase. [ms]
tau_rise (float, ArrayArray, ndarray) – The time constant of the synaptic rise phase. [ms]
g_max (float, ArrayType, Initializer, Callable) – The synaptic strength (the maximum conductance). Default is 1.
name (str) – The name of this synaptic projection.
method (str) – The numerical integration methods.
References
- __init__(pre, post, conn, stp=None, output=None, comp_method='dense', g_max=1.0, tau_decay=10.0, tau_rise=1.0, delay_step=None, method='exp_auto', name=None, mode=None, stop_spike_gradient=False)[source]#
Methods
__init__
(pre, post, conn[, stp, output, ...])add_aft_update
(key, fun)Add the after update into this node
add_bef_update
(key, fun)Add the before update into this node
add_inp_fun
(key, fun)Add an input function.
check_post_attrs
(*attrs)Check whether post group satisfies the requirement.
check_pre_attrs
(*attrs)Check whether pre group satisfies the requirement.
clear_input
(*args, **kwargs)Empty function of clearing inputs.
cpu
()Move all variable into the CPU device.
cuda
()Move all variables into the GPU device.
get_aft_update
(key)Get the after update of this node by the given
key
.get_bef_update
(key)Get the before update of this node by the given
key
.get_delay_data
(identifier, delay_pos, *indices)Get delay data according to the provided delay steps.
get_delay_var
(name)get_inp_fun
(key)Get the input function.
get_local_delay
(var_name, delay_name)Get the delay at the given identifier (name).
has_aft_update
(key)Whether this node has the after update of the given
key
.has_bef_update
(key)Whether this node has the before update of the given
key
.jit_step_run
(i, *args, **kwargs)The jitted step function for running.
load_state
(state_dict, **kwargs)Load states from a dictionary.
load_state_dict
(state_dict[, warn, compatible])Copy parameters and buffers from
state_dict
into this module and its descendants.nodes
([method, level, include_self])Collect all children nodes.
register_delay
(identifier, delay_step, ...)Register delay variable.
register_implicit_nodes
(*nodes[, node_cls])register_implicit_vars
(*variables[, var_cls])register_local_delay
(var_name, delay_name[, ...])Register local relay at the given delay time.
reset
(*args, **kwargs)Reset function which reset the whole variables in the model (including its children models).
reset_local_delays
([nodes])Reset local delay variables.
reset_state
(*args, **kwargs)Reset function which resets local states in this model.
save_state
(**kwargs)Save states as a dictionary.
setattr
(key, value)- rtype:
state_dict
(**kwargs)Returns a dictionary containing a whole state of the module.
step_run
(i, *args, **kwargs)The step run function.
sum_inputs
(*args[, init, label])Summarize all inputs by the defined input functions
.cur_inputs
.to
(device)Moves all variables into the given device.
tpu
()Move all variables into the TPU device.
tracing_variable
(name, init, shape[, ...])Initialize the variable which can be traced during computations and transformations.
train_vars
([method, level, include_self])The shortcut for retrieving all trainable variables.
tree_flatten
()Flattens the object as a PyTree.
tree_unflatten
(aux, dynamic_values)Unflatten the data to construct an object of this class.
unique_name
([name, type_])Get the unique name for this object.
update
([pre_spike])The function to specify the updating rule.
update_local_delays
([nodes])Update local delay variables.
vars
([method, level, include_self, ...])Collect all variables in this node and the children nodes.
Attributes
g_max
mode
Mode of the model, which is useful to control the multiple behaviors of the model.
name
Name of the model.
supported_modes
Supported computing modes.
cur_inputs