# ICaT_HM1992#

class brainpy.dyn.ICaT_HM1992(size, keep_size=False, T=36.0, T_base_p=3.55, T_base_q=3.0, g_max=2.0, V_sh=-3.0, phi_p=None, phi_q=None, method='exp_auto', name=None, mode=None)[source]#

The low-threshold T-type calcium current model proposed by (Huguenard & McCormick, 1992) .

The dynamics of the low-threshold T-type calcium current model  is given by:

$\begin{split}I_{CaT} &= g_{max} p^2 q(V-E_{Ca}) \\ {dp \over dt} &= {\phi_p \cdot (p_{\infty}-p)\over \tau_p} \\ &p_{\infty} = {1 \over 1+\exp [-(V+59-V_{sh}) / 6.2]} \\ &\tau_{p} = 0.612 + {1 \over \exp [-(V+132.-V_{sh}) / 16.7]+\exp [(V+16.8-V_{sh}) / 18.2]} \\ {dq \over dt} &= {\phi_q \cdot (q_{\infty}-q) \over \tau_q} \\ &q_{\infty} = {1 \over 1+\exp [(V+83-V_{sh}) / 4]} \\ & \begin{array}{l} \tau_{q} = \exp \left(\frac{V+467-V_{sh}}{66.6}\right) \quad V< (-80 +V_{sh})\, mV \\ \tau_{q} = \exp \left(\frac{V+22-V_{sh}}{-10.5}\right)+28 \quad V \geq (-80 + V_{sh})\, mV \end{array}\end{split}$

where $$\phi_p = 3.55^{\frac{T-24}{10}}$$ and $$\phi_q = 3^{\frac{T-24}{10}}$$ are temperature-dependent factors ($$T$$ is the temperature in Celsius), $$E_{Ca}$$ is the reversal potential of Calcium channel.

Parameters:
• T (float, ArrayType) – The temperature.

• T_base_p (float, ArrayType) – The brainpy_object temperature factor of $$p$$ channel.

• T_base_q (float, ArrayType) – The brainpy_object temperature factor of $$q$$ channel.

• g_max (float, ArrayType, Callable, Initializer) – The maximum conductance.

• V_sh (float, ArrayType, Callable, Initializer) – The membrane potential shift.

• phi_p (optional, float, ArrayType, Callable, Initializer) – The temperature factor for channel $$p$$.

• phi_q (optional, float, ArrayType, Callable, Initializer) – The temperature factor for channel $$q$$.

References

ICa_p2q_form
alias of Calcium