# IKK2A_HM1992#

class brainpy.dyn.IKK2A_HM1992(size, keep_size=False, E=-90.0, g_max=10.0, V_sh=0.0, phi_p=1.0, phi_q=1.0, method='exp_auto', name=None, mode=None)[source]#

The slowly inactivating Potassium channel (IK2a) model proposed by (Huguenard & McCormick, 1992) [2].

The dynamics of the model is given as [2] [3].

$\begin{split}&IK2 = g_{\mathrm{max}} p q (E-V) \\ &\frac{dp}{dt} = \phi_p \frac{p_{\infty} - p}{\tau_p} \\ &p_{\infty} = \frac{1}{1+ \exp[-(V -V_{sh}+ 43)/17]} \\ &\tau_{p}=\frac{1}{\exp \left(\frac{V -V_{sh}-81.}{25.6}\right)+ \exp \left(\frac{V -V_{sh}+132}{-18}\right)}+9.9 \\ &\frac{dq}{dt} = \phi_q \frac{q_{\infty} - q}{\tau_q} \\ &q_{\infty} = \frac{1}{1+ \exp[(V -V_{sh} + 59)/10.6]} \\ & \tau_{q} = \frac{1}{\exp((V -V_{sh}+1329)/200.) + \exp((V -V_{sh}+130)/-7.1)} + 120 \\\end{split}$

where $$\phi_p$$ and $$\phi_q$$ are the temperature dependent factors (default 1.).

Parameters:
• size (int, sequence of int) – The geometry size.

• method (str) – The numerical integration method.

• name (str) – The object name.

• g_max (float, ArrayType, Initializer, Callable) – The maximal conductance density ($$mS/cm^2$$).

• E (float, ArrayType, Initializer, Callable) – The reversal potential (mV).

• V_sh (float, ArrayType, Callable, Initializer) – The membrane potential shift.

• phi_p (optional, float, ArrayType, Callable, Initializer) – The temperature factor for channel $$p$$.

• phi_q (optional, float, ArrayType, Callable, Initializer) – The temperature factor for channel $$q$$.

References

master_type#

alias of HHTypedNeuron