StuartLandauOscillator#
- class brainpy.dyn.StuartLandauOscillator(size, keep_size=False, a=0.25, w=0.2, x_ou_mean=0.0, x_ou_sigma=0.0, x_ou_tau=5.0, y_ou_mean=0.0, y_ou_sigma=0.0, y_ou_tau=5.0, x_initializer=Uniform(min_val=0, max_val=0.5, rng=[323203819 330710379]), y_initializer=Uniform(min_val=0, max_val=0.5, rng=[323203819 330710379]), method='exp_auto', name=None, mode=None, input_var=True)[source]#
Stuart-Landau model with Hopf bifurcation.
\[\begin{split}\frac{dx}{dt} = (a - x^2 - y^2) * x - w*y + I^x_{ext} \\ \frac{dy}{dt} = (a - x^2 - y^2) * y + w*x + I^y_{ext}\end{split}\]- Parameters:
x_ou_mean (Parameter) – The noise mean of the \(x\) variable, [mV/ms]
y_ou_mean (Parameter) – The noise mean of the \(y\) variable, [mV/ms].
x_ou_sigma (Parameter) – The noise intensity of the \(x\) variable, [mV/ms/sqrt(ms)].
y_ou_sigma (Parameter) – The noise intensity of the \(y\) variable, [mV/ms/sqrt(ms)].
x_ou_tau (Parameter) – The timescale of the Ornstein-Uhlenbeck noise process of \(x\) variable, [ms].
y_ou_tau (Parameter) – The timescale of the Ornstein-Uhlenbeck noise process of \(y\) variable, [ms].
- reset_state(batch_or_mode=None, **kwargs)[source]#
Reset function which resets local states in this model.
Simply speaking, this function should implement the logic of resetting of local variables in this node.
See https://brainpy.readthedocs.io/en/latest/tutorial_toolbox/state_resetting.html for details.