Softplus#
- class brainpy.dnn.Softplus(beta=1, threshold=20)[source]#
Applies the Softplus function \(\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))\) element-wise.
SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.
For numerical stability the implementation reverts to the linear function when \(input \times \beta > threshold\).
- Parameters:
- Shape:
Input: \((*)\), where \(*\) means any number of dimensions.
Output: \((*)\), same shape as the input.
Examples:
>>> import brainpy as bp >>> import brainpy.math as bm >>> m = bp.dnn.Softplus() >>> input = bm.random.randn(2) >>> output = m(input)