# IKA2_HM1992#

class brainpy.dyn.IKA2_HM1992(size, keep_size=False, E=-90.0, g_max=20.0, V_sh=0.0, phi_p=1.0, phi_q=1.0, method='exp_auto', name=None, mode=None)[source]#

The rapidly inactivating Potassium channel (IA2) model proposed by (Huguenard & McCormick, 1992) [2].

This model is developed according to the average behavior of rapidly inactivating Potassium channel in Thalamus relay neurons [2] [1].

$\begin{split}&IA = g_{\mathrm{max}} p^4 q (E-V) \\ &\frac{dp}{dt} = \phi_p \frac{p_{\infty} - p}{\tau_p} \\ &p_{\infty} = \frac{1}{1+ \exp[-(V -V_{sh}+ 36)/20.]} \\ &\tau_{p}=\frac{1}{\exp \left(\frac{V -V_{sh}+35.8}{19.7}\right)+ \exp \left(\frac{V -V_{sh}+79.7}{-12.7}\right)}+0.37 \\ &\frac{dq}{dt} = \phi_q \frac{q_{\infty} - q}{\tau_q} \\ &q_{\infty} = \frac{1}{1+ \exp[(V -V_{sh} + 78)/6]} \\ &\begin{array}{l} \tau_{q} = \frac{1}{\exp((V -V_{sh}+46)/5.) + \exp((V -V_{sh}+238)/-37.5)} \quad V<(-63+V_{sh})\, mV \\ \tau_{q} = 19 \quad V \geq (-63 + V_{sh})\, mV \end{array}\end{split}$

where $$\phi_p$$ and $$\phi_q$$ are the temperature dependent factors (default 1.).

Parameters:
• size (int, sequence of int) – The geometry size.

• method (str) – The numerical integration method.

• name (str) – The object name.

• g_max (float, ArrayType, Initializer, Callable) – The maximal conductance density ($$mS/cm^2$$).

• E (float, ArrayType, Initializer, Callable) – The reversal potential (mV).

• V_sh (float, ArrayType, Callable, Initializer) – The membrane potential shift.

• phi_p (optional, float, ArrayType, Callable, Initializer) – The temperature factor for channel $$p$$.

• phi_q (optional, float, ArrayType, Callable, Initializer) – The temperature factor for channel $$q$$.

References

master_type#

alias of HHTypedNeuron