brainpy.math.surrogate.piecewise_leaky_relu#
- brainpy.math.surrogate.piecewise_leaky_relu(x, c=0.01, w=1.0, origin=False)[source]#
Judge spiking state with a piecewise leaky relu function [1] [2] [3] [4] [5] [6] [7] [8].
If origin=False, computes the forward function:
\[\begin{split}g(x) = \begin{cases} 1, & x \geq 0 \\ 0, & x < 0 \\ \end{cases}\end{split}\]If origin=True, computes the original function:
\[\begin{split}\begin{split}g(x) = \begin{cases} cx + cw, & x < -w \\ \frac{1}{2w}x + \frac{1}{2}, & -w \leq x \leq w \\ cx - cw + 1, & x > w \\ \end{cases}\end{split}\end{split}\]Backward function:
\[\begin{split}\begin{split}g'(x) = \begin{cases} \frac{1}{w}, & |x| \leq w \\ c, & |x| > w \end{cases}\end{split}\end{split}\]>>> import brainpy as bp >>> import brainpy.math as bm >>> import matplotlib.pyplot as plt >>> bp.visualize.get_figure(1, 1, 4, 6) >>> xs = bm.linspace(-3, 3, 1000) >>> for c in [0.01, 0.05, 0.1]: >>> for w in [1., 2.]: >>> grads1 = bm.vector_grad(bm.surrogate.piecewise_leaky_relu)(xs, c=c, w=w) >>> plt.plot(bm.as_numpy(xs), bm.as_numpy(grads1), label=f'x={c}, w={w}') >>> plt.legend() >>> plt.show()
(
Source code
,png
,hires.png
,pdf
)- Parameters:
- Returns:
out – The spiking state.
- Return type:
jax.Array
References