brainpy.synapses.STP#
- class brainpy.synapses.STP(pre, post, conn, U=0.15, tau_f=1500.0, tau_d=200.0, tau=8.0, A=1.0, delay_step=None, method='exp_auto', name=None)[source]#
Short-term plasticity model.
Model Descriptions
Short-term plasticity (STP) [1] [2] [3], also called dynamical synapses, refers to the changes of synaptic strengths over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been observed in experiments. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF).
In the model proposed by Tsodyks and Markram [4] [5], the STD effect is modeled by a normalized variable \(x (0 \le x \le 1)\), denoting the fraction of resources that remain available after neurotransmitter depletion. The STF effect is modeled by a utilization parameter \(u\), representing the fraction of available resources ready for use (release probability). Following a spike,
(i) \(u\) increases due to spike-induced calcium influx to the presynaptic terminal, after which
(ii) a fraction \(u\) of available resources is consumed to produce the post-synaptic current.
Between spikes, \(u\) decays back to zero with time constant \(\tau_f\) and \(x\) recovers to 1 with time constant \(\tau_d\).
In summary, the dynamics of STP is given by
\[\begin{split}\begin{aligned} \frac{du}{dt} & = -\frac{u}{\tau_f}+U(1-u^-)\delta(t-t_{sp}),\nonumber \\ \frac{dx}{dt} & = \frac{1-x}{\tau_d}-u^+x^-\delta(t-t_{sp}), \\ \frac{dI}{dt} & = -\frac{I}{\tau_s} + Au^+x^-\delta(t-t_{sp}), \end{aligned}\end{split}\]where \(t_{sp}\) denotes the spike time and \(U\) is the increment of \(u\) produced by a spike. \(u^-, x^-\) are the corresponding variables just before the arrival of the spike, and \(u^+\) refers to the moment just after the spike. The synaptic current generated at the synapse by the spike arriving at \(t_{sp}\) is then given by
\[\Delta I(t_{spike}) = Au^+x^-\]where \(A\) denotes the response amplitude that would be produced by total release of all the neurotransmitter (\(u=x=1\)), called absolute synaptic efficacy of the connections.
Model Examples
STD
>>> import brainpy as bp >>> import matplotlib.pyplot as plt >>> >>> neu1 = bp.neurons.LIF(1) >>> neu2 = bp.neurons.LIF(1) >>> syn1 = bp.synapses.STP(neu1, neu2, bp.connect.All2All(), U=0.2, tau_d=150., tau_f=2.) >>> net = bp.Network(pre=neu1, syn=syn1, post=neu2) >>> >>> runner = bp.DSRunner(net, inputs=[('pre.input', 28.)], monitors=['syn.I', 'syn.u', 'syn.x']) >>> runner.run(150.) >>> >>> >>> # plot >>> fig, gs = bp.visualize.get_figure(2, 1, 3, 7) >>> >>> fig.add_subplot(gs[0, 0]) >>> plt.plot(runner.mon.ts, runner.mon['syn.u'][:, 0], label='u') >>> plt.plot(runner.mon.ts, runner.mon['syn.x'][:, 0], label='x') >>> plt.legend() >>> >>> fig.add_subplot(gs[1, 0]) >>> plt.plot(runner.mon.ts, runner.mon['syn.I'][:, 0], label='I') >>> plt.legend() >>> >>> plt.xlabel('Time (ms)') >>> plt.show()
STF
>>> import brainpy as bp >>> import matplotlib.pyplot as plt >>> >>> neu1 = bp.neurons.LIF(1) >>> neu2 = bp.neurons.LIF(1) >>> syn1 = bp.neurons.STP(neu1, neu2, bp.connect.All2All(), U=0.1, tau_d=10, tau_f=100.) >>> net = bp.Network(pre=neu1, syn=syn1, post=neu2) >>> >>> runner = bp.DSRunner(net, inputs=[('pre.input', 28.)], monitors=['syn.I', 'syn.u', 'syn.x']) >>> runner.run(150.) >>> >>> >>> # plot >>> fig, gs = bp.visualize.get_figure(2, 1, 3, 7) >>> >>> fig.add_subplot(gs[0, 0]) >>> plt.plot(runner.mon.ts, runner.mon['syn.u'][:, 0], label='u') >>> plt.plot(runner.mon.ts, runner.mon['syn.x'][:, 0], label='x') >>> plt.legend() >>> >>> fig.add_subplot(gs[1, 0]) >>> plt.plot(runner.mon.ts, runner.mon['syn.I'][:, 0], label='I') >>> plt.legend() >>> >>> plt.xlabel('Time (ms)') >>> plt.show()
Model Parameters
Parameter
Init Value
Unit
Explanation
tau_d
200
ms
Time constant of short-term depression.
tau_f
1500
ms
Time constant of short-term facilitation.
U
.15
The increment of \(u\) produced by a spike.
A
1
The response amplitude that would be produced by total release of all the neurotransmitter
delay
0
ms
The decay time of the current \(I\) output onto the post-synaptic neuron groups.
Model Variables
Member name
Initial values
Explanation
u
0
Release probability of the neurotransmitters.
x
1
A Normalized variable denoting the fraction of remain neurotransmitters.
I
0
Synapse current output onto the post-synaptic neurons.
References
- __init__(pre, post, conn, U=0.15, tau_f=1500.0, tau_d=200.0, tau=8.0, A=1.0, delay_step=None, method='exp_auto', name=None)[source]#
Methods
__init__
(pre, post, conn[, U, tau_f, tau_d, ...])add_aft_update
(key, fun)Add the after update into this node
add_bef_update
(key, fun)Add the before update into this node
add_inp_fun
(key, fun[, label, category])Add an input function.
check_post_attrs
(*attrs)Check whether post group satisfies the requirement.
check_pre_attrs
(*attrs)Check whether pre group satisfies the requirement.
clear_input
(*args, **kwargs)Empty function of clearing inputs.
cpu
()Move all variable into the CPU device.
cuda
()Move all variables into the GPU device.
get_aft_update
(key)Get the after update of this node by the given
key
.get_bef_update
(key)Get the before update of this node by the given
key
.get_delay_data
(identifier, delay_pos, *indices)Get delay data according to the provided delay steps.
get_delay_var
(name)get_inp_fun
(key)Get the input function.
get_local_delay
(var_name, delay_name)Get the delay at the given identifier (name).
has_aft_update
(key)Whether this node has the after update of the given
key
.has_bef_update
(key)Whether this node has the before update of the given
key
.jit_step_run
(i, *args, **kwargs)The jitted step function for running.
load_state
(state_dict, **kwargs)Load states from a dictionary.
load_state_dict
(state_dict[, warn, compatible])Copy parameters and buffers from
state_dict
into this module and its descendants.nodes
([method, level, include_self])Collect all children nodes.
register_delay
(identifier, delay_step, ...)Register delay variable.
register_implicit_nodes
(*nodes[, node_cls])register_implicit_vars
(*variables[, var_cls])register_local_delay
(var_name, delay_name[, ...])Register local relay at the given delay time.
reset
(*args, **kwargs)Reset function which reset the whole variables in the model (including its children models).
reset_local_delays
([nodes])Reset local delay variables.
reset_state
(*args, **kwargs)save_state
(**kwargs)Save states as a dictionary.
setattr
(key, value)- rtype:
state_dict
(**kwargs)Returns a dictionary containing a whole state of the module.
step_run
(i, *args, **kwargs)The step run function.
sum_current_inputs
(*args[, init, label])Summarize all current inputs by the defined input functions
.current_inputs
.sum_delta_inputs
(*args[, init, label])Summarize all delta inputs by the defined input functions
.delta_inputs
.sum_inputs
(*args, **kwargs)to
(device)Moves all variables into the given device.
tpu
()Move all variables into the TPU device.
tracing_variable
(name, init, shape[, ...])Initialize the variable which can be traced during computations and transformations.
train_vars
([method, level, include_self])The shortcut for retrieving all trainable variables.
tree_flatten
()Flattens the object as a PyTree.
tree_unflatten
(aux, dynamic_values)Unflatten the data to construct an object of this class.
unique_name
([name, type_])Get the unique name for this object.
update
([pre_spike, stop_spike_gradient])The function to specify the updating rule.
update_local_delays
([nodes])Update local delay variables.
vars
([method, level, include_self, ...])Collect all variables in this node and the children nodes.
Attributes
after_updates
before_updates
cur_inputs
current_inputs
delta_inputs
g_max
implicit_nodes
implicit_vars
mode
Mode of the model, which is useful to control the multiple behaviors of the model.
name
Name of the model.
supported_modes
Supported computing modes.