brainpy.synapses.STP

Contents

brainpy.synapses.STP#

class brainpy.synapses.STP(pre, post, conn, U=0.15, tau_f=1500.0, tau_d=200.0, tau=8.0, A=1.0, delay_step=None, method='exp_auto', name=None)[source]#

Short-term plasticity model.

Model Descriptions

Short-term plasticity (STP) [1] [2] [3], also called dynamical synapses, refers to the changes of synaptic strengths over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been observed in experiments. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF).

In the model proposed by Tsodyks and Markram [4] [5], the STD effect is modeled by a normalized variable \(x (0 \le x \le 1)\), denoting the fraction of resources that remain available after neurotransmitter depletion. The STF effect is modeled by a utilization parameter \(u\), representing the fraction of available resources ready for use (release probability). Following a spike,

  • (i) \(u\) increases due to spike-induced calcium influx to the presynaptic terminal, after which

  • (ii) a fraction \(u\) of available resources is consumed to produce the post-synaptic current.

Between spikes, \(u\) decays back to zero with time constant \(\tau_f\) and \(x\) recovers to 1 with time constant \(\tau_d\).

In summary, the dynamics of STP is given by

\[\begin{split}\begin{aligned} \frac{du}{dt} & = -\frac{u}{\tau_f}+U(1-u^-)\delta(t-t_{sp}),\nonumber \\ \frac{dx}{dt} & = \frac{1-x}{\tau_d}-u^+x^-\delta(t-t_{sp}), \\ \frac{dI}{dt} & = -\frac{I}{\tau_s} + Au^+x^-\delta(t-t_{sp}), \end{aligned}\end{split}\]

where \(t_{sp}\) denotes the spike time and \(U\) is the increment of \(u\) produced by a spike. \(u^-, x^-\) are the corresponding variables just before the arrival of the spike, and \(u^+\) refers to the moment just after the spike. The synaptic current generated at the synapse by the spike arriving at \(t_{sp}\) is then given by

\[\Delta I(t_{spike}) = Au^+x^-\]

where \(A\) denotes the response amplitude that would be produced by total release of all the neurotransmitter (\(u=x=1\)), called absolute synaptic efficacy of the connections.

Model Examples

STD

>>> import brainpy as bp
>>> import matplotlib.pyplot as plt
>>>
>>> neu1 = bp.neurons.LIF(1)
>>> neu2 = bp.neurons.LIF(1)
>>> syn1 = bp.synapses.STP(neu1, neu2, bp.connect.All2All(), U=0.2, tau_d=150., tau_f=2.)
>>> net = bp.Network(pre=neu1, syn=syn1, post=neu2)
>>>
>>> runner = bp.DSRunner(net, inputs=[('pre.input', 28.)], monitors=['syn.I', 'syn.u', 'syn.x'])
>>> runner.run(150.)
>>>
>>>
>>> # plot
>>> fig, gs = bp.visualize.get_figure(2, 1, 3, 7)
>>>
>>> fig.add_subplot(gs[0, 0])
>>> plt.plot(runner.mon.ts, runner.mon['syn.u'][:, 0], label='u')
>>> plt.plot(runner.mon.ts, runner.mon['syn.x'][:, 0], label='x')
>>> plt.legend()
>>>
>>> fig.add_subplot(gs[1, 0])
>>> plt.plot(runner.mon.ts, runner.mon['syn.I'][:, 0], label='I')
>>> plt.legend()
>>>
>>> plt.xlabel('Time (ms)')
>>> plt.show()

STF

>>> import brainpy as bp
>>> import matplotlib.pyplot as plt
>>>
>>> neu1 = bp.neurons.LIF(1)
>>> neu2 = bp.neurons.LIF(1)
>>> syn1 = bp.neurons.STP(neu1, neu2, bp.connect.All2All(), U=0.1, tau_d=10, tau_f=100.)
>>> net = bp.Network(pre=neu1, syn=syn1, post=neu2)
>>>
>>> runner = bp.DSRunner(net, inputs=[('pre.input', 28.)], monitors=['syn.I', 'syn.u', 'syn.x'])
>>> runner.run(150.)
>>>
>>>
>>> # plot
>>> fig, gs = bp.visualize.get_figure(2, 1, 3, 7)
>>>
>>> fig.add_subplot(gs[0, 0])
>>> plt.plot(runner.mon.ts, runner.mon['syn.u'][:, 0], label='u')
>>> plt.plot(runner.mon.ts, runner.mon['syn.x'][:, 0], label='x')
>>> plt.legend()
>>>
>>> fig.add_subplot(gs[1, 0])
>>> plt.plot(runner.mon.ts, runner.mon['syn.I'][:, 0], label='I')
>>> plt.legend()
>>>
>>> plt.xlabel('Time (ms)')
>>> plt.show()

Model Parameters

Parameter

Init Value

Unit

Explanation

tau_d

200

ms

Time constant of short-term depression.

tau_f

1500

ms

Time constant of short-term facilitation.

U

.15

The increment of \(u\) produced by a spike.

A

1

The response amplitude that would be produced by total release of all the neurotransmitter

delay

0

ms

The decay time of the current \(I\) output onto the post-synaptic neuron groups.

Model Variables

Member name

Initial values

Explanation

u

0

Release probability of the neurotransmitters.

x

1

A Normalized variable denoting the fraction of remain neurotransmitters.

I

0

Synapse current output onto the post-synaptic neurons.

References

__init__(pre, post, conn, U=0.15, tau_f=1500.0, tau_d=200.0, tau=8.0, A=1.0, delay_step=None, method='exp_auto', name=None)[source]#

Methods

__init__(pre, post, conn[, U, tau_f, tau_d, ...])

add_aft_update(key, fun)

Add the after update into this node

add_bef_update(key, fun)

Add the before update into this node

add_inp_fun(key, fun[, label, category])

Add an input function.

check_post_attrs(*attrs)

Check whether post group satisfies the requirement.

check_pre_attrs(*attrs)

Check whether pre group satisfies the requirement.

clear_input(*args, **kwargs)

Empty function of clearing inputs.

cpu()

Move all variable into the CPU device.

cuda()

Move all variables into the GPU device.

get_aft_update(key)

Get the after update of this node by the given key.

get_bef_update(key)

Get the before update of this node by the given key.

get_delay_data(identifier, delay_pos, *indices)

Get delay data according to the provided delay steps.

get_delay_var(name)

get_inp_fun(key)

Get the input function.

get_local_delay(var_name, delay_name)

Get the delay at the given identifier (name).

has_aft_update(key)

Whether this node has the after update of the given key.

has_bef_update(key)

Whether this node has the before update of the given key.

jit_step_run(i, *args, **kwargs)

The jitted step function for running.

load_state(state_dict, **kwargs)

Load states from a dictionary.

load_state_dict(state_dict[, warn, compatible])

Copy parameters and buffers from state_dict into this module and its descendants.

nodes([method, level, include_self])

Collect all children nodes.

register_delay(identifier, delay_step, ...)

Register delay variable.

register_implicit_nodes(*nodes[, node_cls])

register_implicit_vars(*variables[, var_cls])

register_local_delay(var_name, delay_name[, ...])

Register local relay at the given delay time.

reset(*args, **kwargs)

Reset function which reset the whole variables in the model (including its children models).

reset_local_delays([nodes])

Reset local delay variables.

reset_state(*args, **kwargs)

save_state(**kwargs)

Save states as a dictionary.

setattr(key, value)

rtype:

None

state_dict(**kwargs)

Returns a dictionary containing a whole state of the module.

step_run(i, *args, **kwargs)

The step run function.

sum_current_inputs(*args[, init, label])

Summarize all current inputs by the defined input functions .current_inputs.

sum_delta_inputs(*args[, init, label])

Summarize all delta inputs by the defined input functions .delta_inputs.

sum_inputs(*args, **kwargs)

to(device)

Moves all variables into the given device.

tpu()

Move all variables into the TPU device.

tracing_variable(name, init, shape[, ...])

Initialize the variable which can be traced during computations and transformations.

train_vars([method, level, include_self])

The shortcut for retrieving all trainable variables.

tree_flatten()

Flattens the object as a PyTree.

tree_unflatten(aux, dynamic_values)

Unflatten the data to construct an object of this class.

unique_name([name, type_])

Get the unique name for this object.

update([pre_spike, stop_spike_gradient])

The function to specify the updating rule.

update_local_delays([nodes])

Update local delay variables.

vars([method, level, include_self, ...])

Collect all variables in this node and the children nodes.

Attributes

after_updates

before_updates

cur_inputs

current_inputs

delta_inputs

g_max

implicit_nodes

implicit_vars

mode

Mode of the model, which is useful to control the multiple behaviors of the model.

name

Name of the model.

supported_modes

Supported computing modes.