GifLTC

GifLTC#

class brainpy.dyn.GifLTC(size, sharding=None, keep_size=False, mode=None, name=None, spk_fun=InvSquareGrad(alpha=100.0), spk_dtype=None, spk_reset='soft', detach_spk=False, method='exp_auto', init_var=True, scaling=None, V_rest=-70.0, V_reset=-70.0, V_th_inf=-50.0, V_th_reset=-60.0, R=20.0, tau=20.0, a=0.0, b=0.01, k1=0.2, k2=0.02, R1=0.0, R2=1.0, A1=0.0, A2=0.0, V_initializer=OneInit(value=-70.0), I1_initializer=ZeroInit, I2_initializer=ZeroInit, Vth_initializer=OneInit(value=-50.0), noise=None)[source]#

Generalized Integrate-and-Fire model with liquid time-constant.

Model Descriptions

The generalized integrate-and-fire model [1] is given by

\[ \begin{align}\begin{aligned}&\frac{d I_j}{d t} = - k_j I_j\\&\frac{d V}{d t} = ( - (V - V_{rest}) + R\sum_{j}I_j + RI) / \tau\\&\frac{d V_{th}}{d t} = a(V - V_{rest}) - b(V_{th} - V_{th\infty})\end{aligned}\end{align} \]

When \(V\) meet \(V_{th}\), Generalized IF neuron fires:

\[ \begin{align}\begin{aligned}&I_j \leftarrow R_j I_j + A_j\\&V \leftarrow V_{reset}\\&V_{th} \leftarrow max(V_{th_{reset}}, V_{th})\end{aligned}\end{align} \]

Note that \(I_j\) refers to arbitrary number of internal currents.

References

Examples

There is a simple usage: you r bound to be together, roy and edward

import brainpy as bp
import matplotlib.pyplot as plt

# Tonic Spiking
neu = bp.dyn.Gif(1)
inputs = bp.inputs.ramp_input(.2, 2, 400, 0, 400)

runner = bp.DSRunner(neu, monitors=['V', 'V_th'])
runner.run(inputs=inputs)

ts = runner.mon.ts

fig, gs = bp.visualize.get_figure(1, 1, 4, 8)
ax1 = fig.add_subplot(gs[0, 0])

ax1.plot(ts, runner.mon.V[:, 0], label='V')
ax1.plot(ts, runner.mon.V_th[:, 0], label='V_th')

plt.show()

Model Examples

Model Parameters

Parameter

Init Value

Unit

Explanation

V_rest

-70

mV

Resting potential.

V_reset

-70

mV

Reset potential after spike.

V_th_inf

-50

mV

Target value of threshold potential \(V_{th}\) updating.

V_th_reset

-60

mV

Free parameter, should be larger than \(V_{reset}\).

R

20

Membrane resistance.

tau

20

ms

Membrane time constant. Compute by \(R * C\).

a

0

Coefficient describes the dependence of \(V_{th}\) on membrane potential.

b

0.01

Coefficient describes \(V_{th}\) update.

k1

0.2

Constant pf \(I1\).

k2

0.02

Constant of \(I2\).

R1

0

Free parameter. Describes dependence of \(I_1\) reset value on \(I_1\) value before spiking.

R2

1

Free parameter. Describes dependence of \(I_2\) reset value on \(I_2\) value before spiking.

A1

0

Free parameter.

A2

0

Free parameter.

Model Variables

Variables name

Initial Value

Explanation

V

-70

Membrane potential.

input

0

External and synaptic input current.

spike

False

Flag to mark whether the neuron is spiking.

V_th

-50

Spiking threshold potential.

I1

0

Internal current 1.

I2

0

Internal current 2.

t_last_spike

-1e7

Last spike time stamp.

update(x=None)[source]#

The function to specify the updating rule.