Source code for brainpy._src.dnn.linear

# -*- coding: utf-8 -*-


import numbers
from typing import Dict, Optional, Union, Callable

import jax
import jax.numpy as jnp
import numpy as np

from brainpy import math as bm
from brainpy._src import connect, initialize as init
from brainpy._src.context import share
from brainpy._src.dependency_check import import_taichi
from brainpy._src.dnn.base import Layer
from brainpy._src.mixin import SupportOnline, SupportOffline, SupportSTDP
from brainpy.check import is_initializer
from brainpy.connect import csr2csc
from brainpy.errors import MathError, PackageMissingError
from brainpy.initialize import XavierNormal, ZeroInit, Initializer, parameter
from brainpy.types import ArrayType, Sharding

ti = import_taichi(error_if_not_found=False)

__all__ = [
  'Dense', 'Linear',
  'Identity',
  'AllToAll',
  'OneToOne',
  'MaskedLinear',
  'CSRLinear', 'EventCSRLinear',
  'JitFPHomoLinear', 'JitFPUniformLinear', 'JitFPNormalLinear',
  'EventJitFPHomoLinear', 'EventJitFPNormalLinear', 'EventJitFPUniformLinear',
]


[docs] class Dense(Layer, SupportSTDP, SupportOnline, SupportOffline): r"""A linear transformation applied over the last dimension of the input. Mathematically, this node can be defined as: .. math:: y = x \cdot weight + b Parameters ---------- num_in: int The number of the input feature. A positive integer. num_out: int The number of the output features. A positive integer. W_initializer: optional, Initializer The weight initialization. b_initializer: optional, Initializer The bias initialization. mode: Mode Enable training this node or not. (default True) """ def __init__( self, num_in: int, num_out: int, W_initializer: Union[Initializer, Callable, ArrayType] = XavierNormal(), b_initializer: Optional[Union[Initializer, Callable, ArrayType]] = ZeroInit(), mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super(Dense, self).__init__(mode=mode, name=name) # shape self.num_in = num_in self.num_out = num_out if num_in < 0: raise ValueError(f'Received an invalid value for `num_out`, expected ' f'a positive integer. Received: num_in={num_in}') if num_out < 0: raise ValueError(f'Received an invalid value for `num_out`, expected ' f'a positive integer. Received: num_out={num_out}') # weight initializer self.W_initializer = W_initializer self.bias_initializer = b_initializer is_initializer(W_initializer, 'weight_initializer') is_initializer(b_initializer, 'bias_initializer', allow_none=True) # parameter initialization W = parameter(self.W_initializer, (num_in, self.num_out)) b = parameter(self.bias_initializer, (self.num_out,)) if isinstance(self.mode, bm.TrainingMode): W = bm.TrainVar(W) b = None if (b is None) else bm.TrainVar(b) self.W = W self.b = b # fitting parameters self.online_fit_by = None # support online training self.offline_fit_by = None # support offline training self.fit_record = dict() def __repr__(self): return (f'{self.__class__.__name__}(name={self.name}, ' f'num_in={self.num_in}, ' f'num_out={self.num_out}, ' f'mode={self.mode})')
[docs] def update(self, x): x = bm.as_jax(x) res = x @ self.W if self.b is not None: res += self.b # online fitting data if share.load('fit', False) and self.online_fit_by is not None: self.fit_record['input'] = x self.fit_record['output'] = res # offline fitting data if share.load('fit', False) and self.offline_fit_by is not None: self.fit_record['input'] = x self.fit_record['output'] = res return res
def online_init(self): if self.b is None: num_input = self.num_in else: num_input = self.num_in + 1 self.online_fit_by.register_target(feature_in=num_input, identifier=self.name) def online_fit(self, target: ArrayType, fit_record: Dict[str, ArrayType]): if not isinstance(target, (bm.ndarray, jnp.ndarray)): raise MathError(f'"target" must be a tensor, but got {type(target)}') x = fit_record['input'] y = fit_record['output'] if x.ndim != 2: raise ValueError(f'"ff" must be a 2D tensor with shape of (num_sample, ' f'num_feature), but we got {x.shape}') if target.ndim != 2: raise ValueError(f'"target" must be a 2D tensor with shape of (num_sample, ' f'num_feature), but we got {target.shape}') if x.shape[0] != target.shape[0]: raise ValueError(f'Batch size of the input and target data should be ' f'the same, while we got {x.shape[0]} != {target.shape[0]}.') if target.shape[1] != y.shape[1]: raise MathError(f'The output dimension of output and target data should be ' f'the same, while we got {target.shape[1]} != {y.shape[1]}') # data if self.b is not None: x = jnp.concatenate([jnp.ones((x.shape[0], 1)), x], axis=-1) # fitting dW = self.online_fit_by.call(target=target, input=x, output=y, identifier=self.name) # assign trained weights if self.b is None: self.W += dW else: db, dW = jnp.split(dW, [1]) self.b += db[0] self.W += dW
[docs] def offline_fit(self, target: ArrayType, fit_record: Dict[str, ArrayType]): """The offline training interface for the Dense node.""" # data checking if not isinstance(target, (bm.ndarray, jnp.ndarray)): raise MathError(f'"targets" must be a tensor, but got {type(target)}') xs = fit_record['input'] ys = fit_record['output'] if xs.ndim != 3: raise ValueError(f'"ffs" must be a 3D tensor with shape of (num_sample, num_time, ' f'num_feature), but we got {xs.shape}') if target.ndim != 3: raise ValueError(f'"targets" must be a 3D tensor with shape of (num_sample, num_time, ' f'num_feature), but we got {target.shape}') if ys.shape != target.shape: raise ValueError(f'The shapes of output and target data should be ' f'the same, while we got {ys.shape} != {target.shape}.') if xs.shape[0] != target.shape[0]: raise ValueError(f'Batch size of the input and target data should be ' f'the same, while we got {xs.shape[0]} != {target.shape[0]}.') if xs.shape[1] != target.shape[1]: raise MathError(f'The time dimension of input and target data should be ' f'the same, while we got {xs.shape[1]} != {target.shape[1]}') # get input and target training data if self.b is not None: xs = jnp.concatenate([jnp.ones(xs.shape[:2] + (1,)), xs], axis=-1) # (..., 1 + num_ff_input) # solve weights by offline training methods weights = self.offline_fit_by(target, xs, ys) # assign trained weights if self.b is None: self.W.value = weights else: bias, Wff = jnp.split(weights, [1]) self.W.value = Wff self.b.value = bias[0]
def stdp_update( self, on_pre: Dict = None, on_post: Dict = None, w_min: numbers.Number = None, w_max: numbers.Number = None ): if isinstance(self.W, float): raise ValueError(f'Cannot update the weight of a constant node.') if not isinstance(self.W, bm.Variable): self.tracing_variable('W', self.W, self.W.shape) if on_pre is not None: spike = on_pre['spike'] trace = on_pre['trace'] self.W.value = dense_on_pre(self.W.value, spike, trace, w_min, w_max) if on_post is not None: spike = on_post['spike'] trace = on_post['trace'] self.W.value = dense_on_post(self.W.value, spike, trace, w_min, w_max)
Linear = Dense
[docs] class Identity(Layer): r"""A placeholder identity operator that is argument-insensitive. """ def __init__(self, *args, **kwargs) -> None: super(Identity, self).__init__(*args, **kwargs)
[docs] def update(self, x): return x
if ti is not None: # @numba.njit(nogil=True, fastmath=True, parallel=False) # def _cpu_dense_on_post(weight, spike, trace, w_min, w_max, out_w): # out_w[:] = weight # for i in numba.prange(spike.shape[0]): # if spike[i]: # out_w[:, i] = np.clip(out_w[:, i] + trace, w_min, w_max) @ti.kernel def _dense_on_post( old_w: ti.types.ndarray(ndim=2), post_spike: ti.types.ndarray(ndim=1), pre_trace: ti.types.ndarray(ndim=1), w_min: ti.types.ndarray(ndim=1), w_max: ti.types.ndarray(ndim=1), out_w: ti.types.ndarray(ndim=2) ): w_min0 = w_min[0] w_max0 = w_max[0] num_pre, num_post = out_w.shape for i, j in ti.ndrange(num_pre, num_post): if post_spike[j]: new_value = out_w[i, j] + pre_trace[i] if new_value < w_min0: out_w[i, j] = w_min0 elif new_value > w_max0: out_w[i, j] = w_max0 else: out_w[i, j] = new_value else: out_w[i, j] = old_w[i, j] dense_on_post_prim = bm.XLACustomOp(cpu_kernel=_dense_on_post, gpu_kernel=_dense_on_post) # @numba.njit(nogil=True, fastmath=True, parallel=False) # def _cpu_dense_on_pre(weight, spike, trace, w_min, w_max, out_w): # out_w[:] = weight # for i in numba.prange(spike.shape[0]): # if spike[i]: # out_w[i] = np.clip(out_w[i] + trace, w_min, w_max) @ti.kernel def _dense_on_pre( old_w: ti.types.ndarray(ndim=2), pre_spike: ti.types.ndarray(ndim=1), post_trace: ti.types.ndarray(ndim=1), w_min: ti.types.ndarray(ndim=1), w_max: ti.types.ndarray(ndim=1), out_w: ti.types.ndarray(ndim=2) ): w_min0 = w_min[0] w_max0 = w_max[0] num_pre, num_post = out_w.shape for i, j in ti.ndrange(num_pre, num_post): if pre_spike[i]: new_value = out_w[i, j] + post_trace[j] if new_value < w_min0: out_w[i, j] = w_min0 elif new_value > w_max0: out_w[i, j] = w_max0 else: out_w[i, j] = new_value else: out_w[i, j] = old_w[i, j] dense_on_pre_prim = bm.XLACustomOp(cpu_kernel=_dense_on_pre, gpu_kernel=_dense_on_pre) else: dense_on_pre_prim = None dense_on_post_prim = None def dense_on_pre(weight, spike, trace, w_min, w_max): if dense_on_pre_prim is None: raise PackageMissingError.by_purpose('taichi', 'custom operators') if w_min is None: w_min = -np.inf if w_max is None: w_max = np.inf w_min = jnp.atleast_1d(w_min) w_max = jnp.atleast_1d(w_max) return dense_on_pre_prim(weight, spike, trace, w_min, w_max, outs=[jax.ShapeDtypeStruct(weight.shape, weight.dtype)])[0] def dense_on_post(weight, spike, trace, w_min, w_max): if dense_on_post_prim is None: raise PackageMissingError.by_purpose('taichi', 'custom operators') if w_min is None: w_min = -np.inf if w_max is None: w_max = np.inf w_min = jnp.atleast_1d(w_min) w_max = jnp.atleast_1d(w_max) return dense_on_post_prim(weight, spike, trace, w_min, w_max, outs=[jax.ShapeDtypeStruct(weight.shape, weight.dtype)])[0]
[docs] class AllToAll(Layer, SupportSTDP): """Synaptic matrix multiplication with All2All connections. Args: num_pre: int. The number of neurons in the presynaptic neuron group. num_post: int. The number of neurons in the postsynaptic neuron group. weight: The synaptic weights. sharding: The sharding strategy. include_self: bool. Whether connect the neuron with at the same position. mode: Mode. The computing mode. name: str. The object name. """ def __init__( self, num_pre: int, num_post: int, weight: Union[float, ArrayType, Callable], sharding: Optional[Sharding] = None, include_self: bool = True, mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super().__init__(mode=mode, name=name) self.num_pre = num_pre self.num_post = num_post self.include_self = include_self self.sharding = sharding weight = init.parameter(weight, (self.num_pre, self.num_post), sharding=sharding) if isinstance(self.mode, bm.TrainingMode): weight = bm.TrainVar(weight) self.weight = weight
[docs] def update(self, pre_val): if bm.ndim(self.weight) == 0: # weight is a scalar if isinstance(self.mode, bm.BatchingMode): assert pre_val.ndim == 2, 'Under the batching mode, the input should be a 2D array.' post_val = bm.sum(pre_val, keepdims=True, axis=1) else: assert pre_val.ndim == 1, 'Under the NonBatching mode, the input should be a 1D array.' post_val = bm.sum(pre_val) if not self.include_self: if self.num_pre == self.num_post: post_val = post_val - pre_val elif self.num_pre > self.num_post: val = pre_val[:self.num_post] post_val = post_val - val else: val = bm.concatenate([pre_val, bm.zeros(self.num_post - self.num_pre)]) post_val = post_val - val post_val = self.weight * post_val else: # weight is a matrix assert self.weight.ndim == 2, '"weight" must be a 2D matrix.' if not self.include_self: post_val = pre_val @ bm.fill_diagonal(self.weight, 0., inplace=False) else: post_val = pre_val @ self.weight return post_val
def stdp_update( self, on_pre: Dict = None, on_post: Dict = None, w_min: numbers.Number = None, w_max: numbers.Number = None ): if isinstance(self.weight, float): raise ValueError(f'Cannot update the weight of a constant node.') if not isinstance(self.weight, bm.Variable): self.tracing_variable('weight', self.weight, self.weight.shape) if on_pre is not None: spike = on_pre['spike'] trace = on_pre['trace'] self.weight.value = dense_on_pre(self.weight.value, spike, trace, w_min, w_max) if on_post is not None: spike = on_post['spike'] trace = on_post['trace'] self.weight.value = dense_on_post(self.weight.value, spike, trace, w_min, w_max)
[docs] class OneToOne(Layer, SupportSTDP): """Synaptic matrix multiplication with One2One connection. Args: num: int. The number of neurons. weight: The synaptic weight. sharding: The sharding strategy. mode: The computing mode. name: The object name. """ def __init__( self, num: int, weight: Union[float, ArrayType, Callable], sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super().__init__(mode=mode, name=name) self.num = num self.sharding = sharding weight = init.parameter(weight, (self.num,), sharding=sharding) if isinstance(self.mode, bm.TrainingMode): weight = bm.TrainVar(weight) self.weight = weight
[docs] def update(self, pre_val): return pre_val * self.weight
def stdp_update( self, on_pre: Dict = None, on_post: Dict = None, w_min: numbers.Number = None, w_max: numbers.Number = None ): if isinstance(self.weight, float): raise ValueError(f'Cannot update the weight of a constant node.') if not isinstance(self.weight, bm.Variable): self.tracing_variable('weight', self.weight, self.weight.shape) if on_pre is not None: spike = on_pre['spike'] trace = on_pre['trace'] self.weight.value += spike * trace if on_post is not None: spike = on_post['spike'] trace = on_post['trace'] self.weight.value += spike * trace
[docs] class MaskedLinear(Layer, SupportSTDP): r"""Synaptic matrix multiplication with masked dense computation. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic value, :math:`M` the synaptic weight using a dense matrix. >>> import brainpy as bp >>> l = bp.dnn.MaskedLinear(bp.conn.FixedProb(0.1, pre=100, post=100), >>> weight=0.1) Args: conn: TwoEndConnector. The connection. weight: Synaptic weights. Can be a scalar, array, or callable function. mask_fun: Masking function. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, conn: connect.TwoEndConnector, weight: Union[float, ArrayType, Callable], mask_fun: Callable = Identity(), sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super().__init__(name=name, mode=mode) assert isinstance(conn, connect.TwoEndConnector) self.conn = conn self.sharding = sharding self.mask_fun = mask_fun # weight weight = init.parameter(weight, (conn.pre_num, conn.post_num), sharding=sharding) if isinstance(self.mode, bm.TrainingMode): weight = bm.TrainVar(weight) self.weight = weight # connection self.mask = bm.sharding.partition(self.conn.require('conn_mat'), sharding=sharding)
[docs] def update(self, x): return x @ self.mask_fun(self.weight * self.mask)
def stdp_update( self, on_pre: Dict = None, on_post: Dict = None, w_min: numbers.Number = None, w_max: numbers.Number = None ): if isinstance(self.weight, float): raise ValueError(f'Cannot update the weight of a constant node.') if not isinstance(self.weight, bm.Variable): self.tracing_variable('weight', self.weight, self.weight.shape) if on_pre is not None: spike = on_pre['spike'] trace = on_pre['trace'] self.weight.value = dense_on_pre(self.weight.value, spike, trace, w_min, w_max) if on_post is not None: spike = on_post['spike'] trace = on_post['trace'] self.weight.value = dense_on_post(self.weight.value, spike, trace, w_min, w_max)
class _CSRLayer(Layer, SupportSTDP): def __init__( self, conn: connect.TwoEndConnector, weight: Union[float, ArrayType, Callable], sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, transpose: bool = True, ): super().__init__(name=name, mode=mode) assert isinstance(conn, connect.TwoEndConnector) assert sharding is None, 'Currently this model does not support sharding.' self.conn = conn self.sharding = sharding self.transpose = transpose # connection self.indices, self.indptr = self.conn.require('csr') # weight weight = init.parameter(weight, (self.indices.size,)) if isinstance(self.mode, bm.TrainingMode): weight = bm.TrainVar(weight) self.weight = weight def stdp_update( self, on_pre: Dict = None, on_post: Dict = None, w_min: numbers.Number = None, w_max: numbers.Number = None ): if bm.isscalar(self.weight): raise ValueError(f'When using STDP to update synaptic weights, the weight cannot be a scalar.') if self.weight.shape != self.indices.shape: raise ValueError(f'The shape of weight should be the same as the shape of sparse weight {self.weight.shape}.') if not isinstance(self.weight, bm.Variable): self.tracing_variable('weight', self.weight, self.weight.shape) if on_pre is not None: # update on presynaptic spike spike = on_pre['spike'] trace = on_pre['trace'] self.weight.value = csr_on_pre_update(self.weight.value, self.indices, self.indptr, spike, trace, w_min, w_max) if on_post is not None: # update on postsynaptic spike if not hasattr(self, '_pre_ids'): with jax.ensure_compile_time_eval(): self._pre_ids, self._post_indptr, self.w_indices = csr2csc( [self.indices, self.indptr], self.conn.post_num, data=np.arange(self.weight.size) ) spike = on_post['spike'] trace = on_post['trace'] self.weight.value = csc_on_post_update(self.weight.value, self._pre_ids, self._post_indptr, self.w_indices, spike, trace, w_min, w_max)
[docs] class CSRLinear(_CSRLayer): r"""Synaptic matrix multiplication with CSR sparse computation. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic value, :math:`M` the synaptic weight using a CSR sparse matrix. Args: conn: TwoEndConnector. The connection. weight: Synaptic weights. Can be a scalar, array, or callable function. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, conn: connect.TwoEndConnector, weight: Union[float, ArrayType, Callable], sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, method: str = None, transpose: bool = True, ): super().__init__(name=name, mode=mode, conn=conn, weight=weight, sharding=sharding, transpose=transpose) self.method = method
[docs] def update(self, x): if x.ndim == 1: return bm.sparse.csrmv(self.weight, self.indices, self.indptr, x, shape=(self.conn.pre_num, self.conn.post_num), transpose=self.transpose) elif x.ndim > 1: shapes = x.shape[:-1] x = bm.flatten(x, end_dim=-2) y = jax.vmap(self._batch_csrmv)(x) return bm.reshape(y, shapes + (y.shape[-1],)) else: raise ValueError
def _batch_csrmv(self, x): return bm.sparse.csrmv(self.weight, self.indices, self.indptr, x, shape=(self.conn.pre_num, self.conn.post_num), transpose=self.transpose)
[docs] class EventCSRLinear(_CSRLayer): r"""Synaptic matrix multiplication with event CSR sparse computation. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic spikes, :math:`M` the synaptic weight using a CSR sparse matrix. Args: conn: TwoEndConnector. The connection. weight: Synaptic weights. Can be a scalar, array, or callable function. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, conn: connect.TwoEndConnector, weight: Union[float, ArrayType, Callable], sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, transpose: bool = True, ): super().__init__(name=name, mode=mode, conn=conn, weight=weight, sharding=sharding, transpose=transpose)
[docs] def update(self, x): if x.ndim == 1: return bm.event.csrmv(self.weight, self.indices, self.indptr, x, shape=(self.conn.pre_num, self.conn.post_num), transpose=self.transpose) elif x.ndim > 1: shapes = x.shape[:-1] x = bm.flatten(x, end_dim=-2) y = jax.vmap(self._batch_csrmv)(x) return bm.reshape(y, shapes + (y.shape[-1],)) else: raise ValueError
def _batch_csrmv(self, x): return bm.event.csrmv(self.weight, self.indices, self.indptr, x, shape=(self.conn.pre_num, self.conn.post_num), transpose=self.transpose)
if ti is not None: @ti.kernel def _csr_on_pre_update( old_w: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) indices: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) indptr: ti.types.ndarray(ndim=1), # vector with shape of (num_pre + 1) spike: ti.types.ndarray(ndim=1), # vector with shape of (num_pre,) trace: ti.types.ndarray(ndim=1), # vector with shape of (num_post,) w_min: ti.types.ndarray(ndim=1), # scalar w_max: ti.types.ndarray(ndim=1), # scalar out_w: ti.types.ndarray(ndim=1) # vector with shape of (num_syn) ): w_min0 = w_min[0] w_max0 = w_max[0] num_pre = spike.shape[0] for i_pre in range(num_pre): if spike[i_pre]: for i_syn in range(indptr[i_pre], indptr[i_pre + 1]): out_w[i_syn] = min(max(old_w[i_syn] + trace[indices[i_syn]], w_min0), w_max0) else: for i_syn in range(indptr[i_pre], indptr[i_pre + 1]): out_w[i_syn] = old_w[i_syn] csr_on_pre_update_prim = bm.XLACustomOp(cpu_kernel=_csr_on_pre_update, gpu_kernel=_csr_on_pre_update) @ti.kernel def _coo_on_pre_update( old_w: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) pre_ids: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) post_ids: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) pre_spike: ti.types.ndarray(ndim=1), # vector with shape of (num_pre,) post_trace: ti.types.ndarray(ndim=1), # vector with shape of (num_post,) w_min: ti.types.ndarray(ndim=1), # scalar w_max: ti.types.ndarray(ndim=1), # scalar out_w: ti.types.ndarray(ndim=1) # vector with shape of (num_syn) ): w_min0 = w_min[0] w_max0 = w_max[0] num_syn = old_w.shape[0] for i_syn in range(num_syn): if pre_spike[pre_ids[i_syn]]: # pre spike out_w[i_syn] = min(max(old_w[i_syn] + post_trace[post_ids[i_syn]], w_min0), w_max0) else: out_w[i_syn] = old_w[i_syn] coo_on_pre_update_prim = bm.XLACustomOp(cpu_kernel=_coo_on_pre_update, gpu_kernel=_coo_on_pre_update) @ti.kernel def _coo_on_post_update( old_w: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) pre_ids: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) post_ids: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) post_spike: ti.types.ndarray(ndim=1), # vector with shape of (num_pre,) pre_trace: ti.types.ndarray(ndim=1), # vector with shape of (num_post,) w_min: ti.types.ndarray(ndim=1), # scalar w_max: ti.types.ndarray(ndim=1), # scalar out_w: ti.types.ndarray(ndim=1) # vector with shape of (num_syn) ): w_min0 = w_min[0] w_max0 = w_max[0] num_syn = old_w.shape[0] for i_syn in range(num_syn): if post_spike[post_ids[i_syn]]: # pre spike out_w[i_syn] = min(max(old_w[i_syn] + pre_trace[pre_ids[i_syn]], w_min0), w_max0) else: out_w[i_syn] = old_w[i_syn] coo_on_post_update_prim = bm.XLACustomOp(cpu_kernel=_coo_on_post_update, gpu_kernel=_coo_on_post_update) # @numba.njit(nogil=True, fastmath=True, parallel=False) # def _cpu_csc_on_pre_update(w, post_ids, indptr, w_ids, spike, trace, w_min, w_max, out_w): # out_w[:] = w # w_min = w_min[()] # w_max = w_max[()] # for i in numba.prange(spike.shape[0]): # post id # if spike[i]: # for k in range(indptr[i], indptr[i + 1]): # j = post_ids[k] # pre id # l = w_ids[k] # syn id # out_w[l] = np.minimum(np.maximum(out_w[l] + trace[j], w_min), w_max) @ti.kernel def _csc_on_post_update( old_w: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) indices: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) indptr: ti.types.ndarray(ndim=1), # vector with shape of (num_post + 1) w_ids: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) post_spike: ti.types.ndarray(ndim=1), # vector with shape of (num_post,) pre_trace: ti.types.ndarray(ndim=1), # vector with shape of (num_pre,) w_min: ti.types.ndarray(ndim=1), # scalar w_max: ti.types.ndarray(ndim=1), # scalar out_w: ti.types.ndarray(ndim=1), # vector with shape of (num_syn) ): w_min0 = w_min[0] w_max0 = w_max[0] num_post = post_spike.shape[0] for i_post in range(num_post): if post_spike[i_post]: for k in range(indptr[i_post], indptr[i_post + 1]): i_syn = w_ids[k] # syn id out_w[i_syn] = min(max(old_w[i_syn] + pre_trace[indices[k]], w_min0), w_max0) else: for k in range(indptr[i_post], indptr[i_post + 1]): i_syn = w_ids[k] # syn id out_w[i_syn] = old_w[i_syn] csc_on_post_update_prim = bm.XLACustomOp(cpu_kernel=_csc_on_post_update, gpu_kernel=_csc_on_post_update) else: csr_on_pre_update_prim = None coo_on_pre_update_prim = None csc_on_post_update_prim = None def csr_on_pre_update(w, indices, indptr, spike, trace, w_min=None, w_max=None): if csr_on_pre_update_prim is None: raise PackageMissingError.by_purpose('taichi', 'customized operators') if w_min is None: w_min = -np.inf if w_max is None: w_max = np.inf w_min = jnp.atleast_1d(w_min) w_max = jnp.atleast_1d(w_max) return csr_on_pre_update_prim(w, indices, indptr, spike, trace, w_min, w_max, outs=[jax.ShapeDtypeStruct(w.shape, w.dtype)])[0] def coo_on_pre_update(w, pre_ids, post_ids, spike, trace, w_min=None, w_max=None): if coo_on_pre_update_prim is None: raise PackageMissingError.by_purpose('taichi', 'customized operators') if w_min is None: w_min = -np.inf if w_max is None: w_max = np.inf w_min = jnp.atleast_1d(w_min) w_max = jnp.atleast_1d(w_max) return coo_on_pre_update_prim(w, pre_ids, post_ids, spike, trace, w_min, w_max, outs=[jax.ShapeDtypeStruct(w.shape, w.dtype)])[0] def csc_on_post_update(w, post_ids, indptr, w_ids, post_spike, pre_trace, w_min=None, w_max=None): if csc_on_post_update_prim is None: raise PackageMissingError.by_purpose('taichi', 'customized operators') if w_min is None: w_min = -np.inf if w_max is None: w_max = np.inf w_min = jnp.atleast_1d(w_min) w_max = jnp.atleast_1d(w_max) return csc_on_post_update_prim(w, post_ids, indptr, w_ids, post_spike, pre_trace, w_min, w_max, outs=[jax.ShapeDtypeStruct(w.shape, w.dtype)])[0] class CSCLinear(Layer): r"""Synaptic matrix multiplication with CSC sparse computation. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic value, :math:`M` the synaptic weight using a CSC sparse matrix. Args: conn: TwoEndConnector. The connection. weight: Synaptic weights. Can be a scalar, array, or callable function. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, conn: connect.TwoEndConnector, weight: Union[float, ArrayType, Callable], sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super().__init__(name=name, mode=mode) assert isinstance(conn, connect.TwoEndConnector) self.conn = conn self.sharding = sharding class BcsrMM(Layer): r"""Synaptic matrix multiplication with BCSR sparse computation. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic value, :math:`M` the synaptic weight using a BCSR sparse matrix. Args: conn: TwoEndConnector. The connection. weight: Synaptic weights. Can be a scalar, array, or callable function. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, conn: connect.TwoEndConnector, weight: Union[float, ArrayType, Callable], sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super().__init__(name=name, mode=mode) assert isinstance(conn, connect.TwoEndConnector) self.conn = conn self.sharding = sharding class BcscMM(Layer): r"""Synaptic matrix multiplication with BCSC sparse computation. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic value, :math:`M` the synaptic weight using a BCSC sparse matrix. Args: conn: TwoEndConnector. The connection. weight: Synaptic weights. Can be a scalar, array, or callable function. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, conn: connect.TwoEndConnector, weight: Union[float, ArrayType, Callable], sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super().__init__(name=name, mode=mode) assert isinstance(conn, connect.TwoEndConnector) self.conn = conn self.sharding = sharding
[docs] class JitFPHomoLinear(Layer): r"""Synaptic matrix multiplication with the just-in-time connectivity. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic variable, :math:`M` the synaptic weights which has the fixed sparse connectivity and weights. Particularly, the connectivity in :math:`M` is sampled from a fixed probability :math:`prob`, and at each connection, the synaptic value is the same :math:`weight`. Args: num_in: int. The number of the input feature. A positive integer. num_out: int. The number of the input feature. A positive integer. prob: float. The connectivity probability. weight: float. The synaptic value at each position. seed: int. The random seed used to keep the reproducibility of the connectivity. transpose: bool. Transpose the JIT matrix or not. Default False. atomic: bool. Compute the post-synaptic value with the atomic summation. Default False. May be changed in the future. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, num_in: int, num_out: int, prob: float, weight: float, seed: Optional[int] = None, sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, transpose: bool = False, atomic: bool = False, ): super().__init__(name=name, mode=mode) self.prob = prob self.sharding = sharding self.transpose = transpose self.seed = np.random.randint(0, 100000) if seed is None else seed self.atomic = atomic self.num_in = num_in self.num_out = num_out # weight if isinstance(self.mode, bm.TrainingMode): weight = bm.TrainVar(weight) self.weight = weight
[docs] def update(self, x): if x.ndim == 1: return bm.jitconn.mv_prob_homo(x, self.weight, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic) elif x.ndim == 2: return jax.vmap(self._batch_mv)(x) elif x.ndim > 2: shapes = x.shape[:-1] x = bm.flatten(x, end_dim=-2) y = jax.vmap(self._batch_mv)(x) return bm.reshape(y, shapes + (y.shape[-1],)) else: raise ValueError
def _batch_mv(self, x): return bm.jitconn.mv_prob_homo(x, self.weight, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic)
[docs] class JitFPUniformLinear(Layer): r"""Synaptic matrix multiplication with the just-in-time connectivity. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic variable, :math:`M` the synaptic weights which has the fixed sparse connectivity and weights. Particularly, the connectivity in :math:`M` is sampled from a fixed probability :math:`prob`, and at each connection, the synaptic value is sample from a uniform distribution :math:`U(w_{low}, w_{high})`. Args: num_in: int. The number of the input feature. A positive integer. num_out: int. The number of the input feature. A positive integer. prob: float. The connectivity probability. w_low: float. The lowest value of the uniform distribution. w_high: float. The highest value of the uniform distribution. seed: int. The random seed used to keep the reproducibility of the connectivity. transpose: bool. Transpose the JIT matrix or not. Default False. atomic: bool. Compute the post-synaptic value with the atomic summation. Default False. May be changed in the future. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, num_in: int, num_out: int, prob: float, w_low: float, w_high: float, seed: Optional[int] = None, sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, transpose: bool = False, atomic: bool = False, ): super().__init__(name=name, mode=mode) self.prob = prob self.sharding = sharding self.transpose = transpose self.seed = np.random.randint(0, 100000) if seed is None else seed self.atomic = atomic self.num_in = num_in self.num_out = num_out # weight self.w_low = w_low self.w_high = w_high
[docs] def update(self, x): if x.ndim == 1: return bm.jitconn.mv_prob_uniform(x, self.w_low, self.w_high, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic) elif x.ndim == 2: return jax.vmap(self._batch_mv)(x) elif x.ndim > 2: shapes = x.shape[:-1] x = bm.flatten(x, end_dim=-2) y = jax.vmap(self._batch_mv)(x) return bm.reshape(y, shapes + (y.shape[-1],)) else: raise ValueError
def _batch_mv(self, x): return bm.jitconn.mv_prob_uniform(x, self.w_low, self.w_high, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic)
[docs] class JitFPNormalLinear(Layer): r"""Synaptic matrix multiplication with the just-in-time connectivity. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic variable, :math:`M` the synaptic weights which has the fixed sparse connectivity and weights. Particularly, the connectivity in :math:`M` is sampled from a fixed probability :math:`prob`, and at each connection, the synaptic value is sample from a normal distribution :math:`N(\mu, \sigma)`. Args: num_in: int. The number of the input feature. A positive integer. num_out: int. The number of the input feature. A positive integer. prob: float. The connectivity probability. w_mu: float. The center of the normal distribution. w_sigma: float. The standard variance of the normal distribution. seed: int. The random seed used to keep the reproducibility of the connectivity. transpose: bool. Transpose the JIT matrix or not. Default False. atomic: bool. Compute the post-synaptic value with the atomic summation. Default False. May be changed in the future. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, num_in: int, num_out: int, prob: float, w_mu: float, w_sigma: float, seed: Optional[int] = None, sharding: Optional[Sharding] = None, transpose: bool = False, atomic: bool = False, mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super().__init__(name=name, mode=mode) self.prob = prob self.sharding = sharding self.transpose = transpose self.seed = np.random.randint(0, 100000) if seed is None else seed self.atomic = atomic self.num_in = num_in self.num_out = num_out # weight self.w_mu = w_mu self.w_sigma = w_sigma
[docs] def update(self, x): if x.ndim == 1: return bm.jitconn.mv_prob_normal(x, self.w_mu, self.w_sigma, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic) elif x.ndim == 2: return jax.vmap(self._batch_mv)(x) elif x.ndim > 2: shapes = x.shape[:-1] x = bm.flatten(x, end_dim=-2) y = jax.vmap(self._batch_mv)(x) return bm.reshape(y, shapes + (y.shape[-1],)) else: raise ValueError
def _batch_mv(self, x): return bm.jitconn.mv_prob_normal(x, self.w_mu, self.w_sigma, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic)
[docs] class EventJitFPHomoLinear(Layer): r"""Synaptic matrix multiplication with the just-in-time connectivity. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic spikes, :math:`M` the synaptic weights which has the fixed sparse connectivity and weights. Particularly, the connectivity in :math:`M` is sampled from a fixed probability :math:`prob`, and at each connection, the synaptic value is the same :math:`weight`. Args: num_in: int. The number of the input feature. A positive integer. num_out: int. The number of the input feature. A positive integer. prob: float. The connectivity probability. weight: float. The synaptic value at each position. seed: int. The random seed used to keep the reproducibility of the connectivity. transpose: bool. Transpose the JIT matrix or not. Default False. atomic: bool. Compute the post-synaptic value with the atomic summation. Default False. May be changed in the future. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, num_in: int, num_out: int, prob: float, weight: float, seed: Optional[int] = None, sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, transpose: bool = False, atomic: bool = True, ): super().__init__(name=name, mode=mode) self.prob = prob self.sharding = sharding self.transpose = transpose self.seed = np.random.randint(0, 1000000) if seed is None else seed self.atomic = atomic self.num_in = num_in self.num_out = num_out # weight if isinstance(self.mode, bm.TrainingMode): weight = bm.TrainVar(weight) self.weight = weight
[docs] def update(self, x): if x.ndim == 1: return bm.jitconn.event_mv_prob_homo(x, self.weight, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic) elif x.ndim == 2: return jax.vmap(self._batch_mv)(x) elif x.ndim > 2: shapes = x.shape[:-1] x = bm.flatten(x, end_dim=-2) y = jax.vmap(self._batch_mv)(x) return bm.reshape(y, shapes + (y.shape[-1],)) else: raise ValueError
def _batch_mv(self, x): return bm.jitconn.event_mv_prob_homo(x, self.weight, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic)
[docs] class EventJitFPUniformLinear(Layer): r"""Synaptic matrix multiplication with the just-in-time connectivity. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic spikes, :math:`M` the synaptic weights which has the fixed sparse connectivity and weights. Particularly, the connectivity in :math:`M` is sampled from a fixed probability :math:`prob`, and at each connection, the synaptic value is sample from a uniform distribution :math:`U(w_{low}, w_{high})`. Args: num_in: int. The number of the input feature. A positive integer. num_out: int. The number of the input feature. A positive integer. prob: float. The connectivity probability. w_low: float. The lowest value of the uniform distribution. w_high: float. The highest value of the uniform distribution. seed: int. The random seed used to keep the reproducibility of the connectivity. transpose: bool. Transpose the JIT matrix or not. Default False. atomic: bool. Compute the post-synaptic value with the atomic summation. Default False. May be changed in the future. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, num_in: int, num_out: int, prob: float, w_low: float, w_high: float, seed: Optional[int] = None, sharding: Optional[Sharding] = None, mode: Optional[bm.Mode] = None, name: Optional[str] = None, transpose: bool = False, atomic: bool = True, ): super().__init__(name=name, mode=mode) self.prob = prob self.sharding = sharding self.transpose = transpose self.seed = np.random.randint(0, 100000) if seed is None else seed self.atomic = atomic self.num_in = num_in self.num_out = num_out # weight self.w_low = w_low self.w_high = w_high
[docs] def update(self, x): if x.ndim == 1: return bm.jitconn.event_mv_prob_uniform(x, self.w_low, self.w_high, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic) elif x.ndim == 2: return jax.vmap(self._batch_mv)(x) elif x.ndim > 2: shapes = x.shape[:-1] x = bm.flatten(x, end_dim=-2) y = jax.vmap(self._batch_mv)(x) return bm.reshape(y, shapes + (y.shape[-1],)) else: raise ValueError
def _batch_mv(self, x): return bm.jitconn.event_mv_prob_uniform(x, self.w_low, self.w_high, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic)
[docs] class EventJitFPNormalLinear(Layer): r"""Synaptic matrix multiplication with the just-in-time connectivity. It performs the computation of: .. math:: y = x @ M where :math:`y` is the postsynaptic value, :math:`x` the presynaptic spikes, :math:`M` the synaptic weights which has the fixed sparse connectivity and weights. Particularly, the connectivity in :math:`M` is sampled from a fixed probability :math:`prob`, and at each connection, the synaptic value is sample from a normal distribution :math:`N(\mu, \sigma)`. Args: num_in: int. The number of the input feature. A positive integer. num_out: int. The number of the input feature. A positive integer. prob: float. The connectivity probability. w_mu: float. The center of the normal distribution. w_sigma: float. The standard variance of the normal distribution. seed: int. The random seed used to keep the reproducibility of the connectivity. transpose: bool. Transpose the JIT matrix or not. Default False. atomic: bool. Compute the post-synaptic value with the atomic summation. Default False. May be changed in the future. sharding: The sharding strategy. mode: The synaptic computing mode. name: The synapse model name. """ def __init__( self, num_in: int, num_out: int, prob: float, w_mu: float, w_sigma: float, seed: Optional[int] = None, sharding: Optional[Sharding] = None, transpose: bool = False, atomic: bool = True, mode: Optional[bm.Mode] = None, name: Optional[str] = None, ): super().__init__(name=name, mode=mode) self.prob = prob self.sharding = sharding self.transpose = transpose self.seed = np.random.randint(0, 100000) if seed is None else seed self.atomic = atomic self.num_in = num_in self.num_out = num_out # weight self.w_mu = w_mu self.w_sigma = w_sigma
[docs] def update(self, x): if x.ndim == 1: return bm.jitconn.event_mv_prob_normal(x, self.w_mu, self.w_sigma, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic) elif x.ndim == 2: return jax.vmap(self._batch_mv)(x) elif x.ndim > 2: shapes = x.shape[:-1] x = bm.flatten(x, end_dim=-2) y = jax.vmap(self._batch_mv)(x) return bm.reshape(y, shapes + (y.shape[-1],)) else: raise ValueError
def _batch_mv(self, x): return bm.jitconn.event_mv_prob_normal(x, self.w_mu, self.w_sigma, self.prob, self.seed, shape=(self.num_out, self.num_in), transpose=self.transpose, outdim_parallel=not self.atomic)